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1. Introduction & Physics motivations
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- The three-favor neutrino mixing, based on the PMNS matrix [1,2], is generally described by ul ' | £%00 Flux normalization, e
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(1) three mixing angles, (2) two neutrino mass squared difference, and (3) one CP-violating phase. . R S L 1
- mass hierarchy of Amj-, octant of 6,3, and value of CP-violating phase are still unknown. olff — mewen N Y R e
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- Absolute fluxed of atmospheric neutrinos as well as their energy spectrum are precisely determined. T [4] s
- v/V ratio basically depends on the absolute fluxes of muon, pion, and kaon (and their anti-particles). s T *f 7” v, I
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- The cosmic-ray muons dominantly come from the decay of mesons produced in the hadronic showers. -y sy .
- Muons from kaon decays tend to have larger energy than those from pion. [5] @ %ézE’(Ge'v)%és e | o
- Muon charge ratio R (u*/u~) is about 1.27 below 200 GeV while it increases to about 1.4 above that energy.
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- New input for the atmospheric neutrino flux simulations, and the hadronic interaction model.
2. Super-Kamiokande detector and reconstruction methods = =, LT
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- Multi-purpose water Cherenkov detector, containing 50 kton of ultra-pure water [6]. &~ =~ | - o —— s v e A
- Gd-loaded water since 2020 July and additional Gd-loading since 2022 June [7]. T T S g — <ULl
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(In this poster, the -days data of SK-IV (pure-water phase) is presented.) wE f muon flux at SK site

- Muons, whose energy is more than 1.3 TeV at the surface, enter the detector at 2 Hz. = o b i it based on MUSIC simulation [8]

Muon energy [GeV]

- About 2500 muons stop in the detector a day (less than 20 GeV). ®
See also poster #22 by M. Shinoki " E R T |
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- Pair of muon and decay-e is tagged within [-5, +35] micro-sec window by the front-end electronics [9].
[Muon] Muon track(s) with direction(s) based on timing of ID PMTs, p
and stopping position based on dE/dx of muon track [10]. ey JL
[Decay-e] Vertex bases on the time residual of hit PMTs timing, direction based on the hit PMTs locations, ] '
and energy based on the number of hit PMTs after corrections by water transparency, angle of incoming photon, dark rate, and so on [11].
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3. Analysis and results

Positive 7+ 2.1969811 + 0.0000022

€ Measurement of muon charge ratio Negative 7, 1.7954 + 0.0020
- Negative muon tends to be captured on Oxygen in water and this process results in the shorter lifetime (2.2 micro-sec = 1.8 micro-sec).
- Time difference between the stop muon and the decay-e reflects the ratio of positive and negative muons.
- 18.4% of negative muons produce Nitrogen-14 and -15, which emit y-rays soon after their production [12,13]. |A,. = 0.184 -

- Selection cuts: energy, vertex, goodness of reconstruction, time difference less than 1.3 micro-sec (due to after pulse, reflection/scattered photons).
- After these cuts, 2,000,000 pairs of muon and decay-e are selected.

- Counting the number of positive and negative muons by fitting the decay curve.
- Correcting the number of negative muon due to nuclear capture reaction.

@ Results

- Charge ratio is measured to be £107 g5 01850 | | | —3 .0 1.8f . ——r
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- Consistent with Kamiokande-Il [14]. "L . minus 2437423+ 79804 | ] 8 F 1 2 1.6F | : Kamiokanced =
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- Slightly higher than expected value 10k 11 5% E 1_35_,&_____,} ______ fi. T i | \ E
. = 3 1.30F — e — 7 C é =

based on the theoretical model [15]. 10p- 11 ET Foormaa | 12f :
- New input for interaction model, I B T S R I e s SO = LA
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4. Summary and future prospect 5 09 [T Mmoo SK range | |3
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- Neutrino oscillation parameters should be precisely measured to understand the properties of neutrinos. S o1t | 5 a2 | Kaon only \ E
- Muon charge ratio reflects the absolute atmospheric neutrino flux and the ratio of neutrinos and anti-neutrinos. > I ll _______________________ :
- Determine the muon charge ratio by measuring the lifetime of decay electrons in the Super-Kamiokande. 0.4E- | % : E
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>R (u"/u) =1.42 + 0.02 (stat.), systematic uncertainties are evaluating now. E | Iﬁ ........ 0L S SO — B
- Study of the polarization of the comic-ray muon by evaluating the angle between muon and decay-e is on-going. o Pion only E
-> Energy spectrum of atmospheric neutrinos from muon/pion/kaon decays depends on their polarization. 3
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