Tau identification using machine learning image classification in Hyper-Kamiokande

<u>Tsukasa Yoshida</u>, M. Ishitsuka, M. Miura^A, for the Hyper–Kamiokande collaboration Tokyo Univ. of Science, The University of Tokyo ICRR^A

#P31

Cherenkov light

Charged

Photosensor

particle in water

Neutrino

Unraveling the History of the Universe and Matter Evolution with Underground Physics

1. Hyper-Kamiokande (HK)

- HK is a 260-kiloton (188-kiloton fiducial mass) water-Cherenkov detector in Japan
 - Cherenkov light produced by charged particles is observed using photomultiplier tubes (PMT).
- Multiple physics goals including:
 - Search for proton decay, Measurement of CP violation, Observation of supernova neutrinos, etc \bullet
- High statistics v_{τ} CC interactions from $v_{\mu} \rightarrow v_{\tau}$ oscillation are expected (>1000 v_{τ} CC in 10 years)

2. Analysis method

The goal of this study is to distinguish tau Motivation : from other particles.

Procedure

- 1. Generate atmospheric neutrino events using HK MC simulation.
- 2. Create a 2D map of the hit PMT positions with respect to the neutrino interaction position (vertex).
- 3. Identify the type of charged particle by machine-learning image recognition using a 2D map as input.
 - Separation of v_e CCQE and v_μ CCQE
 - Separation of v_{τ} CC and other neutrino interactions

2D map is created with the correction for distance between PMT and vertex.

Creating map

The algorithm determines the parameters using a large amount of data.

Machine-Learning

Machine-learning with ulletconvolutional neural networks (CNN) was used with Tensorflow2 and Keras.

https://keras.io/

The ring is blurred by electromagnetic shower from an electron and the multiple scatterings.

A clear ring image appears as the muons move straight through the water.

Multiple rings are observed by hadrons generated by the decay of tau.

- Background: $v_e \& v_\mu CC$ and NC
- Almost the same amounts of

Summary

- I developed an algorithm based on machine-learning image classification to identify v_{τ} CC hadronic decay against the other neutrino interactions.
- Oscillation probability to v_{τ} will be measured in Hyper-Kamiokande with high statistics v_{τ} data.

