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4. Identification of 𝜈! CC
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• Classified atmospheric neutrino events into 𝜈! CC 
(hadronic decay*), 𝜈" & 𝜈# CC and NC.
*tau decays into leptons is indistinguishable from 𝜈"&𝜈#

CC.
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• Background:𝜈"&𝜈#CC and NC 
• Tau is identified with 95% 

efficiency for > 90% 
background rejection.

• Almost the same amounts of 
𝜈"&𝜈# CC and NC remain as 
background.
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3. Separation of 𝜈"CCQE and 𝜈#CCQE
The CCQE interaction produces charged leptons 
corresponding to the neutrino flavors.
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• The true vertex positions are assumed to generate the map
→The performance was compared with the case assuming 
different vertex resolutions with randomly distributed vertex.

Misidentified events were 
found at small 𝑑$%&&
𝑑$%&&:The distance between 

the wall and vertex
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• I developed an algorithm based on machine-learning image classification to identify 𝜈! CC 
hadronic decay against the other neutrino interactions.

• Oscillation probability to 𝜈!will be measured in Hyper-Kamiokande with high statistics 𝜈! data.
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A clear ring image appears as the muons 
move straight through the water.
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The ring is blurred by electromagnetic shower 
from an electron and the multiple scatterings.

Electron

２. Analysis method

1. Generate atmospheric neutrino events using HK MC simulation.
2. Create a 2D map of the hit PMT positions with respect to the 

neutrino interaction position (vertex).
3. Identify the type of charged particle by machine-learning image 

recognition using a 2D map as input.
• Separation of 𝜈"CCQE and 𝜈#CCQE
• Separation of 𝜈!CC and other neutrino interactions

Machine-Learning
• The algorithm determines the 

parameters using a large 
amount of data.

• Machine-learning with 
convolutional neural networks 
(CNN) was used with 
Tensorflow2 and Keras.
https://keras.io/

The goal of this study is to distinguish tau 
from other particles.

Creating map
2D map is created with the correction 
for distance between PMT and vertex.

Motivation︓
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Multiple rings are observed by hadrons 
generated by the decay of tau.
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1. Hyper-Kamiokande (HK)
• HK is a 260-kiloton (188-kiloton fiducial mass) water-Cherenkov detector in Japan
• Cherenkov light produced by charged particles is observed using photomultiplier tubes (PMT).

• Multiple physics goals including:
• Search for proton decay, Measurement of CP violation, Observation of supernova neutrinos, etc

• High statistics 𝜈! CC interactions from 𝜈# → 𝜈! oscillation are expected (>1000 𝜈! CC in 10 years)
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