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1. Introduction 2. KamLAND detector
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Detecting supernova neutrinos (SNvs) reveals SH KamLAND detects v, via the inverse beta decay
detailed mechanisms of the supernova explosion / properties of the neutrino iy (V,p = e*tn) using delayed coincidence (DC) method.
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Delayed event:

0. 032+8 8%2 yr~1 (astronomical obs.) 2  Water-Cherenkov detector for muon veto '_____ 0 Neutron capture

0.0163 + 0.0046 yr~1! (include neutrino obs.) (3] Inner detector
: : i * Liquid scintillator for physics event detection y i 2.2MeV
Supernova rate can be linked to the star formation rate (SFR). [1]Nakazato et al. 2013 e R ,
[2]Adams et al. 2013 . Xe loaded liquid scintillator for Ovf [ experiment
We searched for SNvs and set constraint on the SFR. [3]Rozwadowska et al. 2021 e Radius cut < 600 cm in this study
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Predictions of the galactic SN rate: {
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3. Selection criteria 4. Analysis and result

For DC event 8 We calculate the time difference between DC events and
* Neutrino energy: (1.8-111) MeV KamLAND 7end00 = Reactor v il search for SNv events.
* Time difference between prompt & | | | |nstallat|on '
delayed event: (0.5-100) ps il
Vertex distance between prompt &

delayed event: < 160 cm
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Expected number of accidental cluster: * Number of observed cluster: nyster < 2.1 (Feldman-Cousins)
naccidental — 0. 32+O 02

cluster 0.04 ~ * Rate of observed cluster: R jyster < 0.15 yr—1

10-s time window

For SNv event
| * Two DC events within a 10-s window ‘
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- 5. Discussion

There is a relation between galactic SN rate R§§l and galactic SFR

al
g FR[S][6]

8  Assuming that the clusters are originated from
: SN, we evaluate the detectable range of SNvs.
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(Nakazato model [17is used in this evaluation.)
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These bands include model and

gal _ gal [S]Horiuchi et al. 2011
| o Rgy = ks
Mass Orderlng uncertainties.

SFR [6]Botticella, M. T. et al. 2012

ken = (0.0068- 0.0088)MCT)1 is assumed by the modified Salpeter type
initial mass function(IMF) [5][71(8] .
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MC based on the Poisson with mean N

and PDF was carried out. 10 [7]Salpeter 1955

[8]Madau & Dickinson 2014
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Our result provides the UL on the SFR:

Time distribution of SNv gal ;
SFR < (17. 5-22. 7)M@yr‘ (90%CL)
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Astronomical Obs. (Chomiuk & Povich, 2011)
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astronomical observation
Yspr < (1-2)Mgyr™
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< 40-59 kpc (ccSNe), < 65-81 kpc (failed ccSNe)

Galactic star formation rate (M@yr_l)

This result gives an upper limit on the galactic ccSN and failed ccSN rate:

R%Y < 0.15 yr~1 (90% CL)
assuming that the SN rate on Large Magellanic Cloud and Small Magellanic Cloud are much smaller
than the the galactic SN rate. (4]

[4]Tammann et al. 1994
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- 6. Summary and prospect

y:15.1MeV

We searched for SNvs via the inverse beta decay with the SNvs search via the *2C neutral current (NC) interaction is under the investigation.

KamLAND data. | | Advantages: All flavors of neutrinos which have higher energy than energy
We set an UL on the galactic SN rate and the galactic SFR. threshold of 12C NC would make peak structure around 15MeV.
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