Core-collapse Supernova Models with Heavy Axion-like Particles Kanji Mori (Research Institute of Stellar Explosive Phenomena, Fukuoka University)

1. Heavy Axion-like Particle (ALP)

Axion-like particle: Hypothetical pseudoscalar boson that can couple with photons.

ALP-photon interaction:

$$\mathcal{L}_{a\gamma\gamma} = -\frac{1}{4}g_{a\gamma}a\tilde{F}^{\mu\nu}F_{\mu\nu}$$

4-1. Shock Radius

✓ In the standard 1D models without ALPs, the shock wave stalls at *r*~100 km.

 \checkmark When g_{av} is sufficiently high, the bounce shock is revived and the star successfully explodes!

4-2. Explosion Energy

300 g₁₀=0 Shock Radius [km] 200 120 200 200 200 200 $g=4 \times 10^{-9} \, \text{GeV}^{-1}$ g₁₀=4 g₁₀=10 ----g₁₀=20 ---g₁₀=40 ---150 $g=2 \times 10^{-9} \, \text{GeV}^{-1}$ $g \leq 1 \times 10^{-9} \, \mathrm{GeV}^{-1}$ *m*₂=100 MeV 0.2 0.3 0.5 0.10.4 t_{pb} [s]

Fig. 3. The time evolution of the shock radius.

4. Supernova Explosion with ALPs

Extra heating

ALP radiative decay $(a \rightarrow \gamma + \gamma)$: $\mathsf{MFP} = \frac{E_a}{m_a} \sqrt{1 - \frac{m_a^2}{E_a^2}} \frac{64\pi}{g_{a\gamma\gamma}^2 m_a^3} \sim \frac{4 \times 10^{15} \text{ cm}}{g_{10}^2} \frac{E_{100}}{m_{10}^4}$ **Q.** How do extra cooling and heating affect supernova dynamics? 2. Core-collapse Model Code: 3DnSNe-IDSA [3] EoS: LS220 **Dimension**: 1D **Progenitor**: $20M_{\odot}$

- \checkmark In general, larger g_{av} leads to more energetic explosion
- ✓ Some models approach E_{exp} =10⁵² erg, which is much larger than the typical value for SNe II. \rightarrow Constraint on (m_{a}, g_{av}) ?

Fig. 4. The time evolution of the explosion energy.

4-3. Parameter Dependence

✓ Heavy ALPs tend to induce successful explosion because of shorter MFP.

SN model

- Temperature
- Density

 10^{35}

<u>1034</u> <u>5</u> 1033

ං ප් 10³²

10²⁸

Composition

ALPs Production rate (->cooling)

Absorption rate (->heating)

3. Extra Cooling & Heating

Modification to the internal energy:

 $e_{\text{int. }i}^{n+1} = e_{\text{int. }i}^{n} + (Q_{\text{heat. }i}^{n} - Q_{\text{cool. }i}^{n})\Delta t$

Fig. 2. A schematic picture for the extra heating induced by ALPs.

✓ ALPs with m_a =800 MeV do not lead to explosion because T in the core is not high enough.

> Fig. 5. The models on the parameter space. The crosses show the models that fail to explode and the circles show the models that explode.

5. Summary & Discussion

We developed core-collapse supernova models coupled with heavy ALPs with m_a ~100 MeV. The radiative decay of ALPs can heat the material and help the revival of the bounce shock. We found that a supernova successfully explodes when g_{av} is sufficiently high even in 1D models.

As Fig. 4 shows, some models result in very energetic explosion with E_{exp}~10⁵² erg, which may be interpreted as hypernovae or broad-line SNe Ic. However, such energetic explosion is much rarer than usual SNe II. It is hence more likely that the parameter region with high E_{exp} is excluded. In order to obtain solid constraints, it is desirable to perform sensitivity studies on the equation of state and progenitors. We are planning to perform multi-D simulations to predict the signature of ALPs in multi-messenger signals, which would provide information on the supernova core. Also, we are exploring the ALP effects on different astrophysical objects such as SNe Ia [4], massive stars [5], and pair-instability supernovae [6].

References

[1] Mori, Takiwaki, Kotake & Horiuchi PRD 105 (2022) 063009. [2] di Lella et al. PRD 62 (2000) 125011. [3] Takiwaki, Kotake & Suwa MNRAS 461 (2016) L112. [4] Mori PASJ 73 (2021) 1382. [5] Mori, Takiwaki & Kotake PRD 105 (2022) 023020.

[6] Sakstein, Croon & McDermott PRD 105 (2022) 095038.