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Neutrino-less double beta decay
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A lepton-number-violating nuclear process

test the Majorana nature of neutrinos
2n double beta decay                                  0n double beta (0𝜈𝛽𝛽) decay

within Standard Model (SM) beyond SM

observed :  𝑇 Τ1 2
2𝜈 ∼ 1019−21 yr Not yet: 𝑇 Τ1 2

0𝜈 > 1026−27 yr



Neutrino-less double beta decay
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Ultra rare process

Maximize signal-to-noise ratio (S/N)
Reduce the noise (background; BG)

Select the nucleus with high Q-value
4.27 MeV for 48Ca, 
3.37 MeV for 150Nd,
3.35 MeV for 96Zr, …

Increase the number of target nucleus
𝑆 ∼ ℴ 1 events/yr

𝑛 > 1 kmol for  𝑇 Τ1 2 ∼ 1026 yr

𝑛 > 10 kmol for  𝑇 Τ1 2 ∼ 1027 yr

….

Natural radioactive BG
Maximum energy of g-rays

2.62 MeV 
(208Tl in Th-chain)

Maximum energy of b-rays
3.27 MeV 
(214Bi in U-chain)



Neutrino-less double beta decay
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CANDLES project for 0𝜈𝛽𝛽 study of 48Ca

We select 48Ca as a target nucleus

Number of BG events:
0 events (ROI)  for 131 days of meas.

number of target nuclei
𝑛 ∼ 1.6 mol :    nat.CaF2 scintillator

Ref. PHYS. REV. D 103, 092008 (2021)

ROI



Neutrino-less double beta decay
5

Improve the sensitivity

Isotope enrichment
is the key!

natural

Various double beta decay nuclei
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Isotope separation methods (for uranium)

Methods U Ca Issues

Gas diffusion 〇 × Huge power consumption

Zippe-type centrifuge 〇 × Very high-speed rotation

Aerodynamic 〇 × Huge power consumption

Molecular laser 〇 × Development of 

high-power lasersAtomic vapor laser (AVLIS) 〇 〇

Chemical 〇 〇 Limitation of concentration

Plasma 〇 〇
Huge power consumption

Electromagnetic 〇 〇

Zippe centrifuge Aerodynamic processes Electromagnetic method

https://en.wikipedia.org/wiki/Enriched_uranium
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Ionization    vs.    Deflection

• 2 to 3 photons for 1 atom

• Multiple laser wavelength

• Pulsed laser

• ~1000 photons for 1 atom

• Single laser wavelength

• CW laser
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hν1

e.s.

g.s

hν2

Ionization potential:

~6.1 eV

Laser wavelength:

422.7 nm



Experiment of atomic beam deflection
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spatial distribution meas. 

by TOF

Single laser (~10 mW)

・Deflection

(CW, diode laser)

For TOF measurement

・Ionization

（pulse, YAG laser）

Ca in crucible

(~900 K)

Position[mm]
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Deflection Laser

Ca atomic beam

12.5 mrad

4.6 mrad



Strategies for mass production
• 1st milestone

– One atom absorbs/emits 1000 photons to be deflected ∼ 30 mrad

– Production rate : 𝑛 ∼ 1 Τmol yr

Evaporation rate of nat.Ca

𝑣𝑒𝑣 Τg sec = 2.71 × 10−3
𝑛

1 Τmol yr

𝜀coll
0.5

−1 𝜏

0.5

−1

oven temperature : 𝑇oven ≈ 870 K

Laser power

𝑃 𝑊 = 35.2
𝑛

1 Τmol yr

𝜀𝑙𝑎𝑠
1.0

−1 𝜀coll
0.5

−1 𝜏

0.5

−1

Ca atomic
beam in 
sheet form

Deflection
laser

deflected
48Ca
beam

48Ca 
collection
system

Atomic beam 
oven

• Proof of Principle  

• Small vacuum chamber

• Small commercial crucible 

• Collimation by slit(s)

• Single ECDL

• TOF measurement

• Atomic beam

• Small vacuum chamber

• Large size crucible

• Collimation test
• Mass production

• Large size chamber

• Production rate

~1 mol/yr

U. Of Fukui

• Laser system 

• Stabilized master laser

• Multiple slave laser

• Collection system

• Automatic collection

U. of Fukui

ILE＆ILT

RCNP

Collection 
efficiency

Duty 
factor

Laser  utilization 
efficiency 



R&D for mass production

• Employ a large size crucible

• Collimation by a channel 𝜙5
– Channel length vs beam diameter

Atomic beam system

• High power laser by injection locking
– InGaN diode laser

We are developing a method of laser-power scaling using wavelength-
stabilized multiple slave lasers.

Master Laser
(EC-LD)

Wavelength
Meter

Error Signal

FP-LD 1

FP-LD 2

FP-LD 3

FP-LD 4

Slave
Lasers

N×100 mW

Isolator

422.792 nm

Injection locking
Master laser

+
1 slave laser

Laser system

Nilaco
CH-141

crucible

× ~50
in volume

Channel 
collimator



Development of 

Laser System



What is the required laser power?

Photon energy: 4.7×10-19 J @ 423 nm

Number of photons absorbed by 1 atom: 1,000

→ Number of 48Ca produced by 1 W laser: 2×1015 sec-1 → ~5 g/W/year

>200 W of laser power produces 48Ca of 1 kg/year.

100 mW → 2 W → 2 kW → 60 kW

Current FY2022 Near future
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（~10 kg / year）（~10 g / year） （~300 kg / year）

Future



What is the required wavelength stability?

~800 MHz 

2 MHz rms → 422.792xxxxx ±0.0000006 nm

Isotope shift:

Natural width: ~34 MHz

Doppler width: ~ 60 MHz
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Target of laser frequency stability:



Laser performances required 
for isotope separation

✓ Wavelength: ~422.792 nm

✓ Frequency stability: <2 MHz rms

✓ Power scalability: >100 W (1 unit)

✓ Long life time: >30,000 hours

✓ Continuous wave (CW)

✓ High efficiency

✓ Low cost

✓ No need for high intensity: <1 W/cm2
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Comparison of blue-violet (423 nm) lasers

InGaN laser diode
Second-harmonic of 

IR laser diode

Second-harmonic of 

Ti:sapphire laser

Power of a beam >100 mW 500 mW～1 W 2 W

Cost 500～600 万円/W 500～1000万円/W 1000万円/W

Cost reduction 

possibility
High Low Very low

Long-term stability High Average Low

E-O efficiency 20％ 5～15% 1%

Footprint 30×30 ㎠ 50×40 ㎠ 80×80 ㎠

The cost is not so different currently, but considering the efficiency, 

stability, and the possibility of cost reduction by mass production, 

the InGaN laser diode is the most promising.
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External cavity LD vs.  Fabry-Perot cavity LD

https://www.photonics.com/Articles/Semiconductor_L

asers_An_Overview_of_Commercial/a25099

• Multi longitudinal-mode

(Wide spectral width)

• Low cost

• Compact

• High efficiency

• Single longitudinal-mode

(Line width: <1 MHz)

• Wavelength tunable
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https://doi.org/10.1364/AO.48.006692

https://www.photonics.com/Articles/Semiconductor_Lasers_An_Overview_of_Commercial/a25099
https://doi.org/10.1364/AO.48.006692


Injection-locked multi-beam laser array

By injecting the narrow line width laser light generated by the external

cavity laser diode (EC-LD) into multiple Fabry-Perot laser diodes (FP-LD),

all LDs oscillate at almost the same wavelength.

Master Laser

(EC-LD)

Wavelength 

Meter

Error Signal

FP-LD 1

FP-LD 2

FP-LD 3

FP-LD 4

FP-LD 5

Slave

Lasers
N×100 mW

Isolator

422.792 nm
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Experiment of injection locking

Slave Laser

(FP-LD)

80 mW

Isolator

422.8 nm

R = 10%

20mW

1.5mW

Master Laser

(EC-LD)

Optical Spectrum

Analyzer

Power

Meter

Wavelength 

Meter

422.xxxxx
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Demonstration of injection locking
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Laser spectrum depending on seed wavelength

422.86149 nm 422.86121 nm 422.86094 nm

422.86066 nm 422.86037 nm 422.86008 nm

~0.3 pm step

Injection locking was succeeded in the range of ~0.3 pm (~500 MHz).

(Longitudinal mode interval of the slave laser： ~30 pm)



Cavity length stabilization by using 
Pound–Drever–Hall method

21

R. Pound, Rev. Sci. Instrum. 17, 490 (1946)

R. Drever, J. Hall, et al., Appl. Phys. B 31, 97 (1983).

Master
laser Isolator

Beam splitter

EOM

PD

Phase shifter

Carrier

Side-band

~ 10MHz

Phase

modulation
Front 

mirror

end 

mirror

PDH signal

λ

Feedback control

λ

Resonance

LPF

LOCK

Slave laser



Experiment of wavelength stabilization
by using PDH method

Master Laser

(EC-LD)

Wavelength 

Meter

FP-LD 1

Isolator

Sine Wave 

Generator

Current

Modulation

LD Driver

Temperate

Controller 

TEC

PD

Mixer &

Low pass filter

PI 

Controller

Error Signal

LD current

80 mW
422.8 nm

10 MHz

Grating-angle control



Spectrum and PHD error signal
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Long-term stability measurement
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Frequency 

fluctuation:

0.6 MHz rms

Slave laser

Master laser

Measured by a wavelength meter (WS7-60, absolute accuracy: 60MHz).



Atm

Wavelength tuning to a calcium absorption line
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Fluorescence from calcium atoms was observed to confirm the wavelength 
tuning performance of the injection-locked laser.



Concept of multi-slave laser system

Master Laser

(EC-LD)

Wavelength 

Meter

Error Signal

FP-LD 1

FP-LD 2

FP-LD 3

FP-LD 4

FP-LD 5

Slave

Lasers

N×~100 mW

Isolator

422.792 nm

Function 

Generator Current

Modulation

Built-in PD

Mixer

Lowpass

Filter

PI 

Controller

LD Driver

Temperate

Controller 

TEC



Power scaling
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200 W laser system can be realized using 

~2,500 slave lasers and 1 master lasers.

Master laser

New Master laser light

New Master laser light

Max. 70mW

1.5ｍW

1.5ｍW

1.5ｍW

1.5ｍW

Slave 

laser

×46

80mW

80mW

80mW

80mW

80mW
Slave 

laser

×53



Development of 

Atomic Beam System



R&D of the atomic beam system
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Ca atomic beam 
in sheet form

Deflection 

Laser

Development of an atomic beam system that 

maximizes production rate while maintaining 

high collection efficiency.

Using a collimated atomic 
beam in sheet form.

Multiple tubes arranged in a row as collimators.

Verify the collimating effect 

of a single tube as a first step.



Atomic beam monitoring system
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Outer diameter : 8mm 
Inside diameter : 5mm

Thickness 
Gauge

MCP

0V200V1500V

Laser
for Ionization

Crucibl
e

Collimator

Deflection laser

• 𝜎 is the standard deviation when 
fitted assuming the spatial 
distribution is Gaussian.

• The thickness gauge and ionizing 
laser irradiation position can be 
moved for spatial distribution 
measurement.

• Sigma for measurements using 
fluorescence and thickness 
gauges are converted to TOF 
position

Spatial Distribution

σ = 6.422mm σ = 6.202mm

0ｍｍ→50ｍｍ 50ｍｍ→0ｍｍ

60ｍｍ→0ｍｍ0ｍｍ→60ｍｍ

TOF

Thickness Gauge

Accuracy is not good because of the BG.

Spatial Distribution

𝜎 ※ = 5mm 𝜎 ※ = 5mm

𝜎 = 8mm 𝜎 = 9mm

𝑣𝑥 [m/s]

Velocity Distribution

at
o
m
ic
n
u
m
b
er
[a
.u
.]

𝑥[mm]

at
o
m
ic
n
u
m
b
er
[a
.u
.]

𝜎𝑣𝑥 = 25.1m/s

(Measured value)
𝜎𝑣𝑥 = 9.2m/s

(Calculated value)

Further studies are needed.

Spatial Distribution

𝑥 : Position coordinates perpendicular 
to the atomic beam

𝜎 ※ = 19.1mm

𝜎 = 2.24mm

Fluorescence measurement



Verification of the collimate effect
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Tube length 100mmTube length 50mm

Tube length 150mm Tube length 250mm

σ = 11.20mm σ = 5.98mm

σ = 4.92mm σ =
3.25mm

The length of the tube was varied to 

check the collimating effect.

Longer tubes increase the collimating effect.

Higher collimating effect than the geometrically calculated value could be obtained.

𝜎 is the standard deviation when fitted assuming the spatial 

distribution is Gaussian.



Design of vacuum chamber for 1 mol/year 
32

(40 g/year)

➢6 atomic beams

➢>10 W laser power



Summary
【Laser】

• A power-scalable (>100 W), narrow-line-width (<1 MHz), diode laser 
system has been proposed.

• 80 mW injection-locked laser with 1.5 mW seed power was 
demonstrated.

• 0.6 MHz rms wavelength stabilization using PDH method was 
demonstrated.

• (Next step) Power up from 80 mW → 2 W (24 beams)

【Atomic beam】

• Atomic beam monitoring system was developed.

• Collimating effect of tubes was verified experimentally.

• Tube length was varied to check the collimating effect.

• (Next step) Generation of a sheet atomic beam using a collimator with 
three tubes in a row with a large-volume crucible.
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⇒ 5 g/year demonstration will be performed until FY2023.



Thank you for your attention.

tokita@laser.kuicr.kyoto-u.ac.jp
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