UGAP2022, 13 Jun. 2022 @Noda campus, Tokyo University of Science.

Laser isotope separation of Ca

<u>S. Tokita</u>¹ I. Ogawa² H. Okuda³ S. Umehara⁴ S. Yoshida⁵ H. Niki^{2,4} M. Uemukai⁶ N. Miyanaga^{3,7}

ICR Kyoto Univ.
 Dep. Eng. Univ. Fukui
 ILE Osaka Univ.
 RCNP Osaka Univ.
 Dep. Sci. Osaka Univ.
 Dep. Eng. Osaka Univ.
 Inst. Laser Tech.

A lepton-number-violating nuclear process

test the *Majorana* nature of neutrinos 2ν double beta decay within Standard Model (SM) observed : $T_{1/2}^{2\nu} \sim 10^{19-21}$ yr

 0ν double beta $(0\nu\beta\beta)$ decay beyond SM Not yet: $T_{1/2}^{0\nu} > 10^{26-27}$ yr

Ultra rare process

. . . .

Maximize signal-to-noise ratio (S/N) Reduce the noise (background; BG) Select the nucleus with high Q-value <u>4.27 MeV for ⁴⁸Ca</u>, 3.37 MeV for ¹⁵⁰Nd, 3.35 MeV for ⁹⁶Zr, ... Increase the number of target nucleus $S \sim \sigma(1)$ events/yr n > 1 kmol for $T_{1/2} \sim 10^{26}$ yr n > 10 kmol for $T_{1/2} \sim 10^{27}$ yr

Natural radioactive BG Maximum energy of γ-rays 2.62 MeV (²⁰⁸Tl in Th-chain) Maximum energy of β-rays 3.27 MeV (²¹⁴Bi in U-chain)

CANDLES project for $0\nu\beta\beta$ study of ⁴⁸Ca

We select ⁴⁸Ca as a target nucleus

Number of BG events:

0 events (ROI) for 131 days of meas. number of target nuclei

 $n \sim 1.6 \text{ mol}$: ^{nat.}CaF₂ scintillator

Improve the sensitivity

Isotope enrichment is the key!

Isotope separation methods (for uranium)

Methods	U	Ca	Issues	
Gas diffusion	0	×	Huge power consumption	
Zippe-type centrifuge	0	×	Very high-speed rotation	
Aerodynamic	0	×	Huge power consumption	
Molecular laser	0	×	Development of high-power lasers	
Atomic vapor laser (AVLIS)	0	0		
Chemical	0	0	Limitation of concentration	
Plasma	0	0	Huge power consumption	
Electromagnetic	0	0		

https://en.wikipedia.org/wiki/Enriched_uranium

Zippe centrifuge

Aerodynamic processes

Electromagnetic method

Ionization vs.

10⁶ Ionization potential: ⁴⁰Ca ~6.1 eV Absorption [arb.unit] ₅01 λlase hv_2 ⁴⁴Ca e.s. ¹²Ca 104 -2 -1 0 Detuning[GHz] Absorption spectrum of Ca at 423nm hv g.s 劣化ウラン回収器 電離レ 製品回収器 色素し 。238山基底原子 ● 235 し基底原子 ウラン蒸気 ★235U励起原子 中間励記し ◎ 235 235 し電離原子 選択励起し ·+ቻ ウラン原子 蒸発装置

[出典]日本原子力産業会議(編):原子力年鑑1994年版(平成6年11月)、p135

- 2 to 3 photons for 1 atom
- Multiple laser wavelength
- Pulsed laser

- ~1000 photons for 1 atom
- Single laser wavelength
- CW laser

Deflection

Experiment of atomic beam deflection

Strategies for mass production

- 1st milestone
 - One atom absorbs/emits 1000 photons to be deflected (~ 30 mrad)

R&D for mass production

Atomic beam system

Employ a large size crucible

Development of Laser System

What is the required laser power?

Photon energy: 4.7 × 10⁻¹⁹ J @ 423 nm

Number of photons absorbed by 1 atom: 1,000

 \rightarrow Number of ⁴⁸Ca produced by 1 W laser: 2 × 10¹⁵ sec⁻¹ \rightarrow ~5 g/W/year

>200 W of laser power produces ⁴⁸Ca of 1 kg/year.

What is the required wavelength stability?

Target of laser frequency stability:

2 MHz rms \rightarrow 422.792xxxx ±0.0000006 nm

Laser performances required for isotope separation

>100 W (1 unit)

- ~422.792 nm \checkmark Wavelength:
- ✓ Frequency stability: <2 MHz rms</p>
- \checkmark Power scalability:
- \checkmark Long life time:
- >30,000 hours ✓ Continuous wave (CW)
- ✓ High efficiency
- ✓ Low cost

✓ No need for high intensity: <1 W/cm²

Comparison of blue-violet (423 nm) lasers

	InGaN laser diode	Second-harmonic of IR laser diode	Second-harmonic of Ti:sapphire laser
Power of a beam	>100 mW	500 mW~1 W	2 W
Cost	500~600 万円/W	500~1000万円/W	1000万円/W
Cost reduction possibility	High	Low	Very low
Long-term stability	High	Average	Low
E-O efficiency	20%	5~15%	1%
Footprint	30×30 cm [*]	50 × 40 cm [*]	80×80 cm [*]

The cost is not so different currently, but considering the efficiency, stability, and the possibility of cost reduction by mass production, the InGaN laser diode is the most promising.

External cavity LD vs. Fabry-Perot cavity LD

- Single longitudinal-mode (Line width: <1 MHz)
- Wavelength tunable

- Multi longitudinal-mode (Wide spectral width)
- Low cost
- Compact
- High efficiency

Injection-locked multi-beam laser array

By injecting the narrow line width laser light generated by the external cavity laser diode (EC-LD) into multiple Fabry-Perot laser diodes (FP-LD), all LDs oscillate at almost the same wavelength.

Experiment of injection locking

Demonstration of injection locking

Laser spectrum depending on seed wavelength

~0.3 pm step

(Longitudinal mode interval of the slave laser: ~30 pm)

Injection locking was succeeded in the range of ~0.3 pm (~500 MHz).

Cavity length stabilization by using Pound–Drever–Hall method

Experiment of wavelength stabilization by using PDH method

Spectrum and PHD error signal

Long-term stability measurement

Measured by a wavelength meter (WS7-60, absolute accuracy: 60MHz).

Wavelength tuning to a calcium absorption line

Fluorescence from calcium atoms was observed to confirm the wavelength tuning performance of the injection-locked laser.

Concept of multi-slave laser system

Power scaling

200 W laser system can be realized using ~2,500 slave lasers and 1 master lasers.

Development of Atomic Beam System

R&D of the atomic beam system

Development of an atomic beam system that maximizes production rate while maintaining high collection efficiency.

<u>Using a collimated atomic</u> <u>beam in sheet form.</u>

Multiple tubes arranged in a row as collimators.

Verify the collimating effect of a single tube as a first step.

Atomic beam monitoring system

- σ is the standard deviation when fitted assuming the spatial distribution is Gaussian.
- The thickness gauge and ionizing laser irradiation position can be moved for spatial distribution measurement.
- Sigma for measurements using fluorescence and thickness gauges are converted to TOF position

Verification of the collimate effect

The length of the tube was varied to check the collimating effect.

Higher collimating effect than the geometrically calculated value could be obtained.

Design of vacuum chamber for 1 mol/year³² (40 g/year)

6 atomic beams>10 W laser power

Summary

[Laser]

- A power-scalable (>100 W), narrow-line-width (<1 MHz), diode laser system has been proposed.
- 80 mW injection-locked laser with 1.5 mW seed power was demonstrated.
- 0.6 MHz rms wavelength stabilization using PDH method was demonstrated.
- (Next step) Power up from 80 mW \rightarrow 2 W (24 beams)

[Atomic beam]

- Atomic beam monitoring system was developed.
- Collimating effect of tubes was verified experimentally.
- Tube length was varied to check the collimating effect.
- (Next step) Generation of a sheet atomic beam using a collimator with three tubes in a row with a large-volume crucible.

 \Rightarrow 5 g/year demonstration will be performed until FY2023.

Thank you for your attention.

tokita@laser.kuicr.kyoto-u.ac.jp