Current status and future perspective of nuclear structure calculation for nuclear matrix element of neutrinoless double-beta decay

Nobuo Hinohara

University of Tsukuba

UGAP2022

Neutrinoless double-beta decay

JUNO collaboration

Phase space factor

 $(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$

phase space factor

Phase space factor(PSF): emitted electrons under the Coulomb field of final nucleus
 PSF calculated by different groups basically agree

TABLE 2 | PSF for $0\nu\beta^-\beta^-$ decays to final g.s.

Nucleus	$Q_{g.s.}^{\beta^-\beta^-}$	$G_{0\nu}^{\beta^{-}\beta^{-}}(g.s.) (10^{-15} yr^{-1})$					
	(MeV)	[39]	[11]	[3, 35, 36]	[5]	[47]	[46]
⁴⁸ Ca	4.267	24.65	24.81	26.1	26.0	24.83	24.55
⁷⁶ Ge	2.039	2.372	2.363	2.62	2.55	2.37	2.28
⁸² Se	2.996	10.14	10.16	11.4	11.1	10.18	9.96
⁹⁶ Zr	3.349	20.48	20.58		23.1	20.62	20.45
¹⁰⁰ Mo	3.034	15.84	15.92	18.7	45.6	15.95	15.74
¹¹⁰ Pd	2.017	4.915	4.815			4.83	4.66
¹¹⁶ Cd	2.813	16.62	16.70		18.9	16.73	16.57
¹²⁸ Te	0.8665	0.5783	0.5878	0.748	0.671		
¹³⁰ Te	2.528	14.24	14.22	19.4	16.7	14.25	14.1
¹³⁶ Xe	2.458	14.54	14.58	19.4	17.7	14.62	14.49
¹⁵⁰ Nd	3.371	61.94	63.03	85.9	78.4	63.16	66.0
238U	1.144	32.53	33.61				

Stoica and Mirea, Front. Phys. 7, 12 (2019)

Nuclear matrix elements (NME)

 $(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$

What is the NME?

 $M_{0\nu} = \langle f | \hat{M}_{0\nu} | i \rangle$

- transition amplitude of the nucleus: from initial nucleus (N,Z) to final nucleus (N-2,Z+2)
 transition between 0+ states: spin-zero transition
 NME is not an experimental observable and we need a precise value
- Values of NME depends on theory/group/calculations a factor of 2-3 difference exists

Engel and Menéndez, Rep. Prog. Phys. 80, 046301 (2017)

nuclear matrix element

Nuclear matrix elements

Why do NME values depend on calculations? $M_{0
u} = \langle f | \hat{M}_{0
u} | i
angle$

Because people use different..

decay operator

 $\hfill\square$ many-body theory for describing initial and final states

- □ single-particle model space
- nucleon-nucleon interaction

Decay operators

$$M_{0\nu} = \langle f | \hat{M}_{0\nu} | i \rangle = \left[M_{0\nu}^{\rm GT} - \frac{g_V^2}{g_A^2} M_{0\nu}^{\rm F} + M_{0\nu}^{\rm T} \right]$$

$$\begin{split} M_{0\nu}^{\rm F} &= \langle f | \sum_{ab} H^{\rm F}(r_{ab}, \bar{E}) \tau_a^- \tau_b^- | i \rangle \\ M_{0\nu}^{\rm GT} &= \langle f | \sum_{ab} H^{\rm GT}(r_{ab}, \bar{E}) \boldsymbol{\sigma}_a \cdot \boldsymbol{\sigma}_b \tau_a^- \tau_b^- | i \rangle \\ M_{0\nu}^{\rm T} &= \langle f | \sum_{ab} H^{\rm T}(r_{ab}, \bar{E}) \left[3(\boldsymbol{\sigma}_a \cdot \hat{\boldsymbol{r}}_{ab})(\boldsymbol{\sigma}_b \cdot \hat{\boldsymbol{r}}_{ab}) - \boldsymbol{\sigma}_a \cdot \boldsymbol{\sigma}_b \right] \tau_a^- \tau_b^- | i \rangle \end{split}$$

derived after closure approximation, non-relativistic approximation
 Fermi, Gamow-Teller and tensor parts. Gamow-Teller is dominant
 g_A⁴ is included in the phase space factor

- □ closure approximation: 10-15% error
- □ tensor part: 10% at most

g_A quenching

beta decay

Gamow-Teller operator for β -decay

axial-vector coupling constant (bare) $g_A \sim 1.27$

 $g_{\text{Aeff}} \thicksim 0.7\text{-}0.8~g_{\text{A}}$

 $ec{M_eta} = g_A \sum_i ec{\sigma}_i au_i^-$

Reason of quenching

- many-body corrections
- □ many-nucleon weak current

Menendez, et al., PRL107, 062501 (2011)

Martinez-Pinedo et al., Phys. Rev. C 53, R2602 (1996)

Gysbers et al., Nature Physics 15, 428 (2019)

g_A quenching

Double-beta decay

two-body current from chiral effective field theory

full inclusion of chiral two-body current: 10% quenching

L-J. Wang et al., Phys. Rev. C 98, 031301(R) (2018)

bare value of g_A is used in the compilation (Menendez and Engel)

Nuclear structure theory

decay operator
 many-body theory (correlations)
 single-particle model space
 effective interactions

Shell model (full correlations) realistic/phenomenological int.

correlations

size of single-particle model space

Shell model

- □ full many-body correlation included in a limited single-particle model space
- effective interaction determined phenomenologically to reproduce experimental data
- interaction depends on the model space
- nuclear matrix elements are small

Status of Shell model calculations

Calculations included in the compilation

- ⁴⁸Ca,⁷⁶Ge,⁸²Se,¹²⁴Sn,¹²⁸Te,¹³⁶Xe: Menéndez et al Nucl. Phys. A **818**,139 (2009)
 ⁴⁸Ca, ⁷⁶Ge,⁸²Se,¹²⁴Sn,¹³⁰Te,¹³⁶Xe: Horoi and Neacsu, Phys. Rev. C **93**, 024308 (2016)
- □ ⁴⁸Ca: Iwata et al., Phys. Rev. Lett. **116**, 112502 (2016)

 48 Ca with full sd+pf model space(lwata et al.) dimension: 2×10⁹ in 48 Ti

Later results

□ ⁷⁶Ge, ⁸²Se Yoshinaga et al., Prog. Theor. Exp. Phys. **2018**, 023D02

- phenomenological interaction
- \blacksquare large g_A ($g_{Aeff} \sim 1.13\text{-}1.33g_A$) to explain $2\nu\beta\beta$ half-life

⁴⁸Ca-¹³⁶Xe: Coraggio et al., Phys. Rev. C 101, 044315 (2020)
 ¹⁰⁰Mo: Coraggio et al., Phys. Rev. C 105, 034312 (2022)

- □ realistic interaction (CD-Bonn, V_{low-k})
- effective Hamiltonian/decay operator derived for the model space

QRPA(quasiparticle random-phase approximation)

- □ initial and final states are constructed based on mean field theory
- □ correlation is limited to two-quasiparticle (proton qp and neutron qp) superpositions
- Iarge model space can be employed: same interaction for all nuclei (except for isoscalar pairing)
- isoscalar proton-neutron pairing suppresses the NME strength fitted to reproduce the 2vββ NME
- NME values are various

$$M_{0\nu}^{\rm F} = \sum_{abn_i n_f} H(r_{ab}, \bar{E}) \langle f | \tau_a^- | n_f \rangle \langle n_f | n_i \rangle \langle n_i | \tau_b^- | i \rangle$$
$$M_{0\nu}^{\rm GT} = \sum_{abn_i n_f} H(r_{ab}, \bar{E}) \langle f | \vec{\sigma}_a \tau_a^- | n_f \rangle \langle n_f | n_i \rangle \langle n_i | \vec{\sigma}_b \tau_b^- | i \rangle$$

Status of QRPA calculations

Calculations included in the compilation

	interaction	deformation	proton-neutron pairing
Tübingen(2013,2015)	realistic	spherical (¹⁵⁰ Nd: deformed)	included
Jyväskylä (2015)	realistic	spherical	included
Chapel Hill (2013)	energy density functional (SkM*)	axially deformed	included

Later results

axially deformed pnQRPA calculation (Tübingen, 2018)

	methods	⁷⁶ Ge	⁸² Se	¹³⁰ Te	¹³⁶ Xe	¹⁵⁰ Nd	
Tübingen(2018)	this work	3.12	2.86	2.90	1.11	3.01	
	QRPA-Tü [12]	5.16	4.64	3.89	2.18	-	
LNM	QRPA-Jy [13]	5.26	3.73	4.00	2.91	_	
	QRPA-NC [14]	5.09	_	1.37	1.55	2.71	
Tübingen : Šimkovic et al., Phys. Rev. C 87 , 045501 (2013)							
Fang et al., Phys. Rev. C 92 , 044301 (2015)							
Fang et al., Phys. Rev. C 97 , 045503 (2018)							
Jyväskylä : Hyvarinen and Su	honen, Phys. Rev	v. C 9, 02	24613 (2	2015)			
Chapel Hill: Mustonen and Engel, Phys. Rev. C 87 , 064302 (2013)							

Generator coordinate method

The initial and final states are expressed by superposition of mean fields (Slater determinant)

□ shell model : large-dimensional superposition of orthogonal harmonic-oscillator basis

- □ GCM : small-dimensional (~100) superposition of non-orthogonal mean field basis
- □ only selected collective correlations are included (quadrupole deformation, pairing…)
- weight function is determined by solving many-body Schrödinger equation (Hill-Wheeler equation)
- drawbacks: (almost) impossible to calculate intermediate (odd-odd) nuclei no guarantee on convergence against many-body basis space
 large NME

GCM applications to EDF

Calculations included in the compilation

NR-EDF: non-relativistic energy density functional (interaction) R-EDF: relativistic EDF (interaction)

$$|\Psi_k\rangle = \sum_q f_k(q) |\phi(q)\rangle$$

q: quadrupole/octupole deformation 🖫 isovector pairing

R-EDF: Yao et al. Phys. Rev. C **91**, 024316 (2015), Yao and Engel, Phys. Rev. C **94**, 014306 (2016) NR-EDF: Vaquero et al., PRL **111**, 142501 (2013)

Which basis should be included in GCM?

NH and Engel, Phys. Rev. C 90, 031301(R) (2014)

GCM with mean field with isoscalar-pairing amplitude

QRPA: isoscalar proton-neutron pairing interaction known to suppress the NME
 GCM with EDF: large NME: lack of isoscalar np pairing correlation in the initial/final state
 NR-EDF and R-EDF do not include np pairing term in the interaction

Hamiltonian/EDF that includes isoscalar pairing

Later applications of GCM: Shell model Hamiltonian

Jiao et al., Phys. Rev. C **96**, 054310 (2017)

- □ Solve Shell model Hamiltonian problem with GCM
- Generator coordinates : two quadrupole deformations, isoscalar-pair amplitude

NME values agree between (direct) Shell model calc and GCM GCM can go beyond shell model limit (pfsdg)

Ab-initio applications with GCM wave functions

In-medium Similarity Renormalization Group (IMSRG) applications so far: spherical nuclei

Hamiltonian: chiral EFT

IMSRG + GCM for deformed nuclei, quadrupole deformation (β) and isoscalar pairing (ϕ) correlations

Yao et al. Phys. Rev. C 98, 054311 (2018)

Yao et al., Phys. Rev. Lett. 124, 232501 (2020)

Related processes: 2vßß

precise expression of $2v\beta\beta$ half-life

 $[T_{1/2}^{2\nu}]^{-1} = g_A^4 |M_{\rm GT}^{2\nu}|^2 \left[G_0^{2\nu} + \xi_{31}^{2\nu} G_2^{2\nu} \right] \qquad \qquad \xi_{31}^{2\nu} = M_{\rm GT-3}^{2\nu} / M_{\rm GT}^{2\nu}$

 $G_{\rm 0}$ and $G_{\rm 2}$ has different lepton energy dependence

 ξ_{31} determined by experiment

Simkovic et al., Phys. Rev. C **97**, 034315 (2018) Gando et al., Phys. Rev. Lett. **122**, 192501 (2019)

2vββ decay prediction

NH and Engel, Phys. Rev. C 105, 044314 (2022)

QTDA overlap QRPA overlap

exp +

- In QRPA, usually 2vßß NME(half-life) is used to fit the unknown isoscalar pairing strength
 - \rightarrow prediction of 2v $\beta\beta$ NME is impossible
- QRPA calculations using EDF with isoscalar pairing fitted to β decay half-lives globally
 - \rightarrow prediction of 2v $\beta\beta$ NME possible

```
QRPA (Finite-amplitude Method) calculations
with 10 EDFs, two overlap prescriptions
```

Small uncertainties in heavier isotopes (A>130)

(Hirsch et al., Phys. Rev. C 66,015502 (2002)) PIKACHU experiment for ¹⁶⁰Gd Extension to $0\nu\beta\beta$ and double electron capture is in progress

0.25

0.2

0.15

0.1

0.05

M^{2v} m_ec²

Double Gamow-Teller transition

Constraining $0\nu\beta\beta$ NME from double Gamow-Teller transitions

ground-state transition

Shimizu et al., Phys. Rev. Lett. 120, 142502 (2018)

Neutrinoless double-beta decay: Majorana neutrino, neutrino mass hierarchy

- □ Nuclear matrix element (NME) calculation
- Uncertainties depending on the nuclear structure theories (shell model, QRPA, GCM)
 - \Box decay operator, g_A quenching, two-body currents
 - improvements of the nuclear structure theories
 realistic interaction in shell model
 - inclusion of deformation in QRPA
 - □ inclusion of isoscalar pairing in GCM
 - combination of GCM with shell model/ab-initio method
- **□** related process to constrain $0v\beta\beta$ NME
 - \blacksquare precise measurement of $2\nu\beta\beta$ decay
 - double Gamow-Teller transitions