

Unraveling the History of the Universe and Matter Evolution with Underground Physics

Low Temperature Thermal Calorimeters for 0vββ search **Technology and its Perspective** Yong-Hamb Kim (김용함 金容菡) **Center for Underground Physics Institute for Basic Science**

Double beta decay w. & wo. v emission

2ν mode

- A conventional
- 2nd order weak process in NP

 $0v \mod e$

• A hypothetical process only if $m_v \neq 0$, $\overline{v} = v$, $|\Delta L| = 2$

0vββ Experiments

Methods	Isotopes	
Loaded Liquid Scintillators	¹³⁰ Te: SNO+, JUNO ¹³⁶ Xe: KamLAND-Zen	
Ge semiconductors	⁷⁶ Ge: GERDA, Majorana Demonstrator LEGEND, CDEX	
TPCs (liquid, gas)	¹³⁶ Xe: EXO200, nEXO NEXT PandaX-III, R2D2	
Low-temperature thermal calorimeters	 ⁴⁸Ca: CANDLES-LT R&D ⁸²Se: CUPID-0 ¹⁰⁰Mo: AMoRE, CUPID-Mo, CUPID ¹³⁰Te: CUORE 	
Tracking chambers	⁸² Se: SuperNEMO	
Inorganic scintillators	⁴⁸ Ca: CANDLES	

LTDs for $0\nu\beta\beta$ search

Sensors & Detection Technologies

Low Temperature Thermal Calorimeters

"Calorimetric measurement of heat signals at mK temperatures"

Choice of thermometers for $0\nu\beta\beta$ searches

- Thermistors (NTD Ge) CUORE, CUPID
- MMC (Metallic Magnetic Calorimeter) AMoRE CANDLES-LT
- TES (Transition Edge Sensor) Light detector
- KID (Kinetic Inductance Device) CALDER
- etc.

Thermistors

• Doped semiconductors

- Neutron transmuted doped (NTD) Ge thermistors

- Ion implantation doped Si thermistors

- $R(T) : 1 \text{ M}\Omega \sim 100 \text{ M}\Omega$
- Readout: (cold) JFET
- High resolution + High linearity + Wide dynamic range + Absorber friendly
- Require very low bias current(sensitive to micro-phonics and electromagnetic interference), Slow response

T

M

Metallic Magnetic Calorimeter (MMC)

- Paramagnetic alloy in a magnetic field Au:Er(300-1000 ppm), Ag:Er(300-1000 ppm)
 → Magnetization variation with temperature
- Readout: SQUID
- High resolution + High linearity + Wide dynamic range + Absorber friendly + No bias heating + Relatively fast + MUX
- More wires & materials needed for SQUIDs and MMCs

Transition Edge Sensor (TES)

- Superconducting strip at T_c
 - Elemental superconductors: Ti, Ir, W
 - Proximity bilayers: Mo/Au, Mo/Cu, Al/Ag, Ir/Au, Ir/Pt, etc.
- $R_N: 10 \text{ m}\Omega \sim 1 \Omega$
- Readout: SQUID
- High energy resolution + Low energy threshold + Fast + MUX
- Limited linearity and limited dynamic range, Absorber selective (or chip carrier)

Kinetic Inductance Detectors

- Pair breaking superconducting detector: Quasiparticles are electron-like excitations in superconductors from breaking Cooper pairs
- Superconductor as the inductor in a LC resonance circuit
- Breaking pairs changes the Kinetic inductance
- Easy to MUX (on one chip)
- Non-equilibrium detector

port 1

0.8

0.6 s_1-0.4

0.2

5.66

Sensor performance (example)

✓ A test result with an MMC.

✓ NTD Ge thermistors also have similar performance.

High resolution detection of heat signals

- ✓ Crystal target
 - Many DBD nuclei can be used when found in a crystal form

- ✓ Many ββ nuclei test
- ✓ $Q_{\beta\beta} > 2.6$ MeV possible for ⁴⁸Ca, ⁸²Se, ¹⁰⁰Mo, etc.
- \rightarrow Low env. γ bkg.

Simultaneous phonon-scintillation detection

data

4000

3.10 σ contour lines

5000

Energy [keV]

6000

Use of Cherenkov light

- \checkmark TeO₂ does not scintillate, but MeV electrons (not alphas) produce Cherenkov light in TeO₂.
- ✓ 100-200 eV visible photons are emitted at $Q_{\beta\beta}$ (Artusa *et al* 2017 *Phys*. *Lett.* B 767 321–9)

< TeO₂ in a CRESST setup >

Light detector with phonon amplification

from A Giuliani' talk in DBD Shanghai 2017

Common strategies to increase sensitivity

$$T_{1/2}^{0\nu} \propto \sqrt{\frac{M \cdot \text{time}}{\text{bkg} \cdot \Delta E}}$$
 $T_{1/2}^{0\nu} \propto M \cdot \text{time}$

- ✓ Increase *M* : Large detector mass, Enriched ββ elements ← budget
- ✓ Increase 'time' : up to a few years

✓ Smaller ΔE : Better energy resolution ← detector tech. LT thermal calorimeters

- ✓ Bkg. : Minimize background events in ROI
 - Underground facility (w. controls on Rn, n, dust, long-lived cosmogenics)
 - Radio-assay equipment and protocols
 - Controls on natural occurring radioactive materials (U, Th, etc.)
 - In-situ bkg. identification
 - Alphas, gammas, $\beta\beta(2\nu)$, μ and n- induced, ν -e scatterings
 - **\leftarrow** PSD, Heat/L or Charge/L detection, Veto, Shield, Topology, ΔE , Δt
 - Etc. LT thermal calorimeters

LT 0v\beta\beta\beta Projects

- ✓ This is a short introduction for LT $0\nu\beta\beta$ searches.
- ✓ The summary may not cover all of those 0νββ project using LTDs.

0vββ Experiments

Methods	Isotopes	
Loaded Liquid Scintillators	¹³⁰ Te: SNO+, JUNO ¹³⁶ Xe: KamLAND-Zen	
Ge semiconductors	⁷⁶ Ge: GERDA, Majorana Demonstrator LEGEND, CDEX	
TPCs (liquid, gas)	¹³⁶ Xe: EXO200, nEXO NEXT PandaX-III, R2D2	
Low-temperature thermal calorimeters	 ⁴⁸Ca: CANDLES-LT R&D ⁸²Se: CUPID-0 ¹⁰⁰Mo: AMoRE, CUPID-Mo, CUPID ¹³⁰Te: CUORE 	
Tracking chambers	⁸² Se: SuperNEMO	
Inorganic scintillators	⁴⁸ Ca: CANDLES	

30 years of 0vββ searches @LNGS

fig. from S. Dell'Oro' talk in DBD Shanghai 2017

TeO₂ for ¹³⁰Te

ββ-decay nuclei with Q > 2 MeV	Q (MeV)	Abund. (%)
$^{48}Ca \rightarrow ^{48}Ti$	4.271	0.187
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	2.040	7.8
$^{82}\text{Se} \rightarrow ^{82}\text{Kr}$	2.995	9.2
${}^{96}\text{Zr} \rightarrow {}^{96}\text{Ru}$	3.350	2.8
$^{100}Mo \rightarrow ^{100}Ru$	3.034	9.6
110 Pd $\rightarrow ^{110}$ Cd	2.013	11.8
$^{116}Cd \rightarrow ^{116}Cd$	2.802	7.5
124 Sn $\rightarrow ^{124}$ Ge	2.228	5.8
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	2.528	34.2
136 Xe $\rightarrow ^{136}$ Ba	2.479	8.9
150 Nd $\rightarrow ^{150}$ Sm	3.367	5.6

¹³⁰Te

- ✓ Q = 2528 keV (between ²⁰⁸Tl line (2615 keV) and its Compton edge)
- ✓ Large natural abundance : 34.2%

TeO₂ crystals

- ✓ Debye Temp. ~ 230 K
- \checkmark High crystal quality can be achieved.
- ✓ Low radio contaminants
- ➢ Do not scintillate → Particle ID not allowed

From CUORICINO, To CUORE, & ..

CUORE Tech for 0vββ search wih LTD

<I.Nutini v-2022>

* Low temperature and low vibrations

TeO₂ detectors operated as calorimeters at ~10 mK stable

- Multistage cryogen-free cryostat. Nested vessels at decreasing temperature. Cooling systems: Pulse Tubes and Dilution Unit
 - Mass to be cooled < 4K: ~ 15 tons (IVC volume and Cu vessels, Roman Pb shield)
 - Mass to be cooled < 50 mK: ~ 3 tons (Top Pb shield, Cu supports and TeO₂ detectors)
- Mechanical vibration isolation: Reduce energy dissipation by vibrations

* Low background

- Deep underground location
- Strict radio-purity controls on materials and assembly
- Passive shields from external and cryostat radioactivity
- Detector: high granularity and self-shielding

Adams D. et al. (CUORE collaboration), Prog.Part.Nucl.Phys. 122 (2022) 103902 https://doi.org/10.1016/j.ppnp.2021.103902

```
UGAP 2022
```

Yong-Hamb Kim

10-1 10-1 Other isotopes

10²

10

mightest (meV)

Evoluion from CUORE to CUPID

CUORE: Cryogenic Underground Observatory for Rare Events

CUPID: CUORE Upgrade with Particle IDentification

energy (keV)

CUPID-0 with Zn⁸²Se

Events / (8 keV

⁸²Se

- ✓ Q = 2995 keV > ²⁰⁸Tl line (2615 keV)
- ✓ Natural abundance: 9.2%

ZnSe scintillates at LT.

Fully mounted CUPID-0 detector to a wet DR in LNGS

> $T_{1/2}$ > 4.7 × 10²⁴ y (90% C. I. limit) m_{$\beta\beta$} < 276-570 meV

Pulse shape of light signals Shape Parameter (A. U.) 2000 6000 8000 10000 Energy (keV) <L.Pagnanini v-2022> Entries 30 **CUPID-0** Preliminary Mean 2993 16.59 kg × yr RMS 114.8 Integral 30 82Se Q_{ββ} 3.5 ⊟ 2.51.5 0.5 28002850 2900 2950 3000 3050 3100 3150

<A.Zolotarova v-2022>

CUPID-Mo

Preliminary

7.4 keV FWHM at Q

CUPID-Mo

¹⁰⁰Mo

- ✓ Q = 3034 keV > 208 Tl line (2615 keV)
- ✓ Natural abundance : 9.7%
- ✓ $T_{1/2}(2\nu) = 7.1 \times 10^{18}$ y: the largest ββ decay rate
- Li_2MoO_4 : Scintillating molybdates, Selected

NTD Ge, Cold JFET

EDELWEISS cryostat

$20 \mod 10$ 2600 Energy (keV)

Events / (1 keV) 00

CUPID-Mo Results

✓ The most precise measurement of ¹⁰⁰Mo $2\nu\beta\beta$

CUPID

<A.Zolotarova v-2022>

- Heat-Light detection: $Li_2^{100}MoO_4 + NTD$
- Particle Identification
- ¹⁰⁰Mo Enrichment > 95%
- \bullet 1596 crystals and 240 kg of ^{100}Mo
- FWHM <10 keV at Q (3034 keV)
- CUORE cryostat

Background goal: 10^{-4} ckky Discovery sensitivity at 3σ : $T_{1/2}(^{100}Mo \ 0\nu\beta\beta) = 10^{27}$ year $m_{\beta\beta} \sim 12\text{-}20 \text{ meV}$

AMoRE

AMoRE: Advanced Mo-based Rare process Experiment

¹⁰⁰Mo

- ✓ Q = 3034 keV > 208 Tl line (2615 keV)
- ✓ Natural abundance : 9.7%
- ✓ $T_{1/2}(2\nu) = 7.1 \times 10^{18}$ y: the largest ββ decay rate

 ${}^{40}Ca^{100}MoO_4$: enriched ${}^{100}Mo$ and depleted ${}^{48}Ca$

- : Selected for a pilot and AMoRE-1'
- : High Debye temperature: $T_D = 438$ K

Li₂¹⁰⁰MoO₄: Selected for AMoRE-II

MMC for heat and light detection

AMoRE Progress

AMoRE Pilot result

- ^{48depl}Ca¹⁰⁰MoO₄: 6 crystals 1.9 kg (0.9kg ¹⁰⁰Mo)
- Proof of the AMoRE detection principle
- Understanding of the background components & reduction of them.
- \bullet Background level of ~0.5 ckky at 2.8-3.2 MeV
 - n-induced γ , Internal bkg, rock/air-radon γ
 - Internal background— arXiv:2107.07704
- $T_{1/2}(0v) > 3.2 \times 10^{23}$ years at 90% CL.

AMoRE Pilot → AMoRE-I

- 18 crystals: 13 $^{48depl}Ca^{100}MoO_4$ (4.58 kg) + 5 $Li_2^{100}MoO_4$ (1.61 kg)
- Total crystal mass 6.19 kg $(3.0 \text{ kg} \, {}^{100}\text{Mo})$
- MMC sensor: Au:Er → Ag:Er
- Using same cryostat + two stage temperature control: $\langle \Delta T \rangle < 1 \ \mu K$
- Shielding enhancements:
 - Outer Pb: $15 \rightarrow 20$ cm; neutron shields
 - boric acid silicon + more PE / B-PE
 - More muon counter coverage
 - More supply of Rn-free air.

AMoRE-I (Preliminary) Results

- Data taking (Science) started Dec./2020
- Data for 1.67 kg ¹⁰⁰Mo exposure is analyzed.
- To be continued till 2023.
- 10 30 keV FWHM@2.6MeV (15 keV average)

```
T_{1/2}(0\nu) > 1.2 \times 10^{24} \text{ y} (90\% \text{ CL.})
with 1.67 kg <sup>100</sup>Mo exposure
```

AMoRE-II in prepration

- In a new underground lab (Yemilab)
- With new cryostat and new shields

90 modules (~27 kg LMO) for the first stage

AMoRE-II Cryogenics

- Three PTRs (PT420 RM)
- Dilution refrigerator (delivered)
 - 5.4 mK base temperature
 - 7 uW at 10 mK
- Spring Suspended Still with Eddy Current Damper
- Independent holding structure for detector tower
- 1 m diameter M.C plate
- 26 cm thick inner Pb shield
- 450 detector towers
- $Li^{100}MoO_4$ (~ 100 kg ¹⁰⁰Mo at final stage)
- Refer CS Kang's talk in LTD18 Milano.
- We thanks A D'Addabbo, C Bucci, P Golar for showing the CUORE system.

AMoRE-II from chips to the house

AMoRE-II Background budgets

AMoRE-II goals

- AMoRE-II for $T > -5 \times 10^{26}$ years by 100 kg of ¹⁰⁰Mo \times 5 years running.
- Reduction of background level down below 10⁻⁴ ckky.

CANDLES-LT

⁴⁸Ca

- ✓ Q = 4271 keV. The highest Q
- ✓ Natural abundance : 0.187%

 CaF_2 , $CaF_2(Eu)$

Low Temp. R&D : Osaka Univ. + IBS/KRISS

Heat & Light detection with CaF₂

- Promissing demostration for heat-light detection with MMCs from CaF₂ crystals at 10-20 mK
- Clear particle identifcation

• Poor energy resolution due to position dependence

UGAP 2022

Yong-Hamb Kim

Heat & Light detection with CaF₂

30 mBq of ²²⁶Ra (U-chain) within an R&D crystal Delayed coincidence ($^{222}Rn \rightarrow ^{218}Po \rightarrow ^{214}Pb$)

- High resoltuion with position dependence correction
- Further R&D should continue.

R&D challenges

Technical tasks and challenges

- ✓ Unresolved pileups.
- ✓ Single-site event selection.
- ✓ Resolve position dependence (for fast sensors)
- ✓ Multiplexing capability

Unresolved pileups of ¹⁰⁰Mo 2νββ signals

- 1 kg ¹⁰⁰Mo \rightarrow ~20 mBq of 2v $\beta\beta$ $T_{1/2}$ (2v $\beta\beta$ ¹⁰⁰Mo) > 7.1 × 10¹⁸ year
- Timing resolution for pileup rejection:
 - $\sim 40~\mu s$ for $10^{\text{-5}}$ ckky in a Ø50 $\times 50$ LMO (in most conservative way)

Light signals: $\tau_{\text{fast}} \sim 200 \ \mu s$

- Should improve τ of light (heat) signals
- Likelihood pileup rejections should be implemented.

R&D proposal to multi-site event rejection

- Fast heat & light signals.
- Finite phonon speed: $\sim 10^5$ cm/s
- PSD with time dependence can be studied.

R&D setup for fast phononphoton signals: 30 us rise time (Heidelberg)

SWOT for LT Detectors in $0\nu\beta\beta$ search

Strengths

- ✓ High energy resolution
- ✓ Particle ID
- ✓ Proven technology

Weaknesses

- ✓ Surface effect
- ✓ Unresolved pileups
- ✓ Bkg from copper
- ✓ Number of channels

Opportunities

- ✓ Use of Cherenkov light
- ✓ New crystal targets
- Single-site selection
- ✓ Multiplexing
- ✓ Possible collaboration

Threats

- ✓ Isotope production
- ✓ Crystal growing
- ✓ Purification

Closing remarks

- \checkmark 0νββ search projects with LT detectors are well established experiments.
- The technology provides promising performance in energy resolution, background reduction method, and scalability of the detector size.
- ✓ Those LT projects aim to investigate $0\nu\beta\beta$ process in many nuclei.

Stay tuned !