Capture of Dark Matter in Neutron Stars

Motoko Fujiwara (U. Tokyo)

Today's Talk

Neutron Star may be a good probe of Dark matter-Nucleon scattering effects!

- High density of nucleus → Wide window for DM mass & cross section
- Strong gravitational potential → **Inelastic scattering** may be switched on

We have complementarity btw DM Direct Detection & Neutron Star Observation eg. Inelastic scattering in Electroweak Multiplet DM

Dark Matter

Evidence

- Rotation curves of galaxies (\sim kpc) [V. Rubin et al. (1980)]
- \bullet Bullet cluster (\sim Mpc) [Markevich et al. (2002)] [Clowe et al. (2006)]
- Gravitational lensing [Oguri et al. (2018)]

150 K. Freese (2009) NGC 6503 NGC 6503 halo 100 100 200 Radius (kpc)

Invisible (Dark) unknown massive source

= Dark Matter (DM)

General Feature

- Electrically neutral
- Stable / Long-lived
- Non-relativistic component (≃Massive)

Necessary component for structure formation No candidate in the Standard Model (SM) Various candidates are suggested

Weakly Interacting Massive Particle

- DM couples to the SM particles → DM energy density is explained as thermal relic abundance
- Probed by various experiments

eg. DM scattering → **Direct Detection exp.**: Searching for **Nucleon** recoil by **DM** scattering of, Talk by Dr. S. Kazama

DM Search in Neutron Star

[N. F. Bell, G. Busoni, S. Robles (2018)]

[M. Baryakhtar et al. (2017)]

[N. Raj, P. Tanedo, H-B. Yu (2018)]

Today's Topic: Neutron Star may be a good probe of DM-Nucleon scattering effects!

General Feature of Neutron Star

Star mainly composed of **neutrons** (Neutron degeneracy pressure vs Grav. pressure)

Typical radius: $R \simeq 10 \text{ km}$

Typical radius. $M \simeq 10~{\rm Km}$ Determined by Eq. of State (EoS) for Neutron Star (* Uncertainty from model of nuclear force under high pressure)

Key: Very Compact Object of Nucleon → Several Advantages for DM Search

Averaged density:
$$\bar{\rho}_{\rm NS} \sim \frac{3M_{\rm NS}}{4\pi R_{\rm NS}^3} = 6.7 \times 10^{14} \ {\rm g/cm^3} \times \left(\frac{M_{\rm NS}}{1.4 \ M_{\odot}}\right) \left(\frac{R_{\rm NS}}{10 \ {\rm km}}\right)^{-3}$$

(cf. Nuclear saturation point: $\rho_0 \simeq 2 \times 10^{14} \text{ g/cm}^3$)

Averaged density: $\bar{\rho}_{\rm NS} \sim \frac{3M_{\rm NS}}{4\pi R_{\rm NS}^3} = 6.7 \times 10^{14} \ {\rm g/cm^3} \times \left(\frac{M_{\rm NS}}{1.4 \ M_{\odot}}\right) \left(\frac{R_{\rm NS}}{10 \ {\rm km}}\right)^{-3}$ Efficient target for DM scattering

2. Strong gravitational potential

Escape velocity:
$$v_{\rm esc} \simeq \sqrt{\frac{2GM_{\rm NS}}{R_{\rm NS}}} = 0.65c \times \left(\frac{M_{\rm NS}}{1.4~M_{\odot}}\right)^{\frac{1}{2}} \left(\frac{R_{\rm NS}}{10~{\rm km}}\right)^{-\frac{1}{2}}$$

Accelerated DM has relativistic velocity Inelastic process may be accessible

Contents

- Introduction
- DM Capture in Neutron Star
- Direct Detection vs Neutron Star Obs.
- Capture of Electroweak Multiplet DM
- Summary

DM Capture in Neutron Star

DM Capture in Neutron Star (1/3)

etailed analysis: [C. Kouvaris (2008)]

intuitive discussion: [M. Baryakhtar et al. (2017)]

DM number rate into Neutron star

- DM flux through into old Neutron Stars
 - Initial DM is non-relativistic: $v_{\rm DM} \simeq 10^{-3} c$
 - Velocity reaches to comparable to speed of light: $v_{\rm esc} \simeq \sqrt{\frac{2GM_{\rm NS}}{R_{\rm NS}}}$
- Incoming DM grazes Neutron Star
 - ⇔ (Perihelion) = (Neutron Star radius)

$$b_{\text{max}} = R_{\text{NS}} \cdot \frac{v_{\text{esc}}}{v_{\text{DM}}} \cdot \left(1 - \frac{2GM_{\text{NS}}}{R_{\text{NS}}}\right)^{-\frac{1}{2}}$$

- DM flux interacts w/ Neutron Star
 - = DM flux entering into circle area w/ radius $b_{
 m max}$

$$\frac{dN}{dt} = \sqrt{\frac{6}{\pi}} \cdot \pi b_{\text{max}}^2 \cdot v_{\text{DM}} \cdot \frac{\rho_{\text{DM}}}{m_{DM}}$$

DM Capture in Neutron Star (2/3)

intuitive discussion: [M. Baryakhtar et al. (2017)]

$$v_{\rm DM} \simeq 230 \text{ km/s}, \quad v_{\rm esc} = \sqrt{\frac{2GM_{\rm NS}}{R_{\rm NS}}}$$

$$v_{\rm esc} = \sqrt{1 - v_{\rm esc}^2}$$

Energy deposit

DM is accelerated by the gravitational potential of NS
 → Before scattering, (DM velocity) ≃ v_{esc}

$$\overline{\Delta E_s} = \frac{m_n m_{\rm DM}^2 \gamma_{\rm esc}^2 v_{\rm esc}}{m_n^2 + m_{\rm DM}^2 + 2m_n m_{\rm DM} \gamma_{\rm esc}} \simeq 1 \text{ GeV } (m_{\rm DM} \gg m_n)$$

Condition for gravitational trap

- DM can escape Neutron Star gravitational trap \Leftrightarrow DM has v > 0 after scattering $@r \simeq \infty$
- Condition for DM capture after **one scattering**: $\Delta E_s \gtrsim \frac{1}{2} m_{\rm DM} v_{\rm DM}^2$

DM mass range that only one scattering is necessary for DM capture

$$1 \text{ GeV} \lesssim m_{\text{DM}} \lesssim 1 \text{ PeV}$$

DM Capture in Neutron Star (3/3)

Neutron Star Cooling

- Standard cooling scenario for old neutron stars is established
 - \rightarrow Prediction on Neutron Star surface temperature: T_s
- T_s for old Neutron Star (eg. $t_{\rm NS} \gtrsim 10^7~{\rm yr}$) is predicted to have very low (due to photon radiation)

Neutron Star Heating by DM

- If DM has sufficient interaction w/ nucleon, it is captured by Neutron Stars
 - → Kinetic/mass energy injection occurs
 - \rightarrow Observed T_s is increased
- Deviation from standard prediction may be detected by future infrared telescopes eg. James Webb Space Telescope (JWST) [J. P. Gardner et al. [JWST] (2006)]

Direct Detection vs Neutron Star Obs.

Condition for DM Capture

$v_{\rm DM} \simeq 230 \text{ km/s}$

(1) Threshold Cross Section

- Minimum cross section for DM capture in Neutron Stars
 - = cross section for DM to scatter **ONCE** in Neutron Star within one crossing

$$\sigma_{\rm th} \equiv \frac{\pi R_{\rm NS}^2 m_n}{M_{\rm NS}} \simeq 2.5 \times 10^{-45} \ {\rm cm}^2 \ \times \left(\frac{R_{\rm NS}}{11.43 \ {\rm km}}\right)^2 \left(\frac{M_{\rm NS}}{1.4 \ M_{\odot}}\right)^{-1} \\ = \begin{cases} \sigma_{\rm th}^{(n)} = 1.7 \times 10^{-45} \ {\rm cm}^2 \ [{\rm N.\,F.\,Bell,\,et\,al.(2020)}] \\ \sigma_{\rm th}^{(n)} = 1.4 \times 10^{-44} \ {\rm cm}^2 \ [{\rm F.\,Anzuini,\,et\,al.\,(2021)}] \end{cases}$$

momentum trans. & effective nucleon mass are considered

(2) Threshold Mass Difference for Inelastic Process

- Comparably large mass difference may be accessible (cf. $\Delta E_{\rm s} \simeq 1~{\rm GeV}$)
- Maximal mass difference that may appear in Neutron Star can be derived [N. F. Bell, G. Busoni, S. Robles (2018)]

$$\Delta M \simeq m_n \left(1 - \frac{2GM_{\rm NS}}{R_{\rm NS}} \right)^{-\frac{1}{2}} \simeq 330 \,\,{\rm MeV}$$

Direct Detection vs Neutron Star Obs.

		Direct detection	NS observation	$*N = n, p$ DM mass $\simeq 1 \text{ TeV}$
Elastic	SI	$\sigma_{\rm SI}^{(N),\rm upper} \simeq 10^{-45} \ {\rm cm}^2$	$\sigma_{ m th}^{(N)} \simeq 10^{-45} \ { m cm}^2$	← Triggered by Cross section
	SD	$\sigma_{\rm SD}^{(N),\rm upper} \simeq 10^{-40} \ {\rm cm}^2$		
Inelastic	SI	$\Delta M_0, \Delta M_{\pm} \lesssim \mathcal{O}(100) \text{ keV}$	$\Delta M_0, \Delta M_{\pm} \lesssim \mathcal{O}(100) \text{ MeV}$	← Triggered by Mass splitting
	SD	$\Delta m_0, \Delta m_{\pm} \gtrsim C(100)$ KeV		

- ullet (Threshold cross section in Neutron Star) \simeq (Current bound in Direct Detection (SI)) for TeV scale DM
- Neutron Star obs. is even sensitive for SD couplings
- Accessible mass splitting $\simeq \mathcal{O}(100)~{\rm MeV} \to {\rm Inelastic}$ scattering may be switched on

We expect different advantages for Direct Detection & Neutron Star observation

Capture of Electroweak Multiplet DM

MF, K. Hamaguchi, N. Natsumi, J. Zheng, [arXiv:2204.02238]

Electroweak Multiplet DM

DM w/ Electroweak interaction

- Definition: DM has **Electroweak Charge** → Often appears in Phys. beyond the SM (eg. Supersymmetry, Extra-dim.) * Electroweak Symmetry: $SU(2)_I \times U(1)_V$, DM stability should be realized by other symmetry
- Feature 1: Correct DM energy density is explained as thermal relic in expanding universe for **TeV scale DM**

$$\langle \sigma_{\rm ann} v \rangle \sim 3 \times 10^{-26} \text{ cm}^3/\text{s} \simeq \alpha_2^2/m_{\rm DM}^2 \implies m_{\rm DM} \simeq \mathcal{O}(1) \text{ TeV}$$

 α_2 : SU(2)_L fine structure const.

Feature 2: **Small mass splitting** btw Electroweak multiplet

 $\Delta M_{\rm EW} \simeq \alpha_2 m_W \simeq \mathcal{O}(100) \text{ MeV}$

(Radiative correction, assuming $m_{\rm DM}\gg m_{\rm W}$)

Search Strategy

- (1) DM Direct Detection
- (2) Neutron Star Obs.

Inelastic Scattering process may be switched on in Neutron Star

$Y \neq 0$ Multiplet Model

- We introduce **two SU(2)**_L n-**plet w/** $\pm Y$ (Y > 0) to compensate gauge anomaly: $\{\chi_m, \eta_{m'}\}$
- Two neutral components $\{\chi^0, \chi^{0'}\}$ → Lightest component: χ^0 is DM candidate
- Inelastic scattering via Z exchange is constrained by Direct Detection \to We focus on $\Delta M_0 \gtrsim \mathcal{O}(100)~{\rm keV}$
- Effective operator to induce ΔM_0 is required \rightarrow Effective Field Theory approach is mandatory

Search Strategy

eg. Doublet DM (n = 2, Y = 1/2)

- For large cut-off region: $\Lambda \gtrsim 10^5 \text{ GeV}$
 - ullet DM-Nucleon cross section is smaller than u-background
 - Mass splitting gets smaller by Λ^{-1} suppression
 - → Inelastic scattering process is switched on in Neutron Star

Expectation:

Direct detection & Neutron Star obs. will be a complimentary probe for EW Multiplet DM

Summary

DM Capture in Neutron Star

- DM capture heats up Neutron Stars to be probed in future IR telescope
- Strong gravitational force → We may probe new aspects of DM theory
 - Threshold cross section: $\sigma_N \simeq 10^{-45} \text{ cm}^2$
 - Threshold mass splitting: $\Delta M \lesssim \mathcal{O}(100) \text{ MeV}$

Effective Field Theory Approach

- DM-Higgs Effective Operators are key to reveal search strategy
 - σ_N is induced from low dim. operator \rightarrow Probed in Direct Detection
 - ΔM is suppressed for large $\Lambda \rightarrow$ Inelastic scatt. occur in Neutron Star

Search Strategy

- Y = 0: Direct detection & Neutron Star obs. are both promising
- $Y \neq 0$: Neutron Star windows depend on operator dimension (cf. Complimentarity in Doublet case)

Backup

$Y \neq 0$: Operator Analysis

Ingredients: $\chi_m \sim (n, Y)$, $\eta_m \sim (n, -Y)$, $H \sim (2, 1/2)$

$$\mathcal{L} \stackrel{?}{\supset} \# \psi^{\dagger} \psi' H^{\dagger} H \qquad (\psi, \psi' = \chi, \eta)$$

$$\mathcal{L}_{\text{dim5}} = \frac{\#}{\Lambda} \eta \mathbf{1} \chi H^{\dagger} \mathbf{1} H + \frac{\#}{\Lambda} \eta T_{a} \chi H^{\dagger} \tau_{a} H + \text{h.c.}$$

- DM-Higgs coupling arises \rightarrow Relevant for $\sigma_N^{(SI)}$ for low Λ
- Relevant contribution to ΔM_+ for low Λ

$$\mathcal{L}_{\text{dim6}} = \frac{\#}{\Lambda^2} \chi^{\dagger} \bar{\sigma}^{\mu} \chi \ H^{\dagger} i \overleftrightarrow{D}_{\mu} H + \frac{\#}{\Lambda^2} \ \eta^{\dagger} \bar{\sigma}^{\mu} \eta \ H^{\dagger} i \overleftrightarrow{D}_{\mu} H$$

• DM-Z coupling arises \rightarrow Relevant for $\sigma_N^{(SD)}$ for low Λ

* We also have other operators:

 T^a : SU(2)_L generators

$$\mathcal{L} \supset \frac{c_q}{\Lambda^2} \chi^\dagger \bar{\sigma} \chi_m \ q^\dagger \bar{\sigma}^\mu q \ + \frac{c_6'}{\Lambda^2} \chi^\dagger \bar{\sigma}^\mu T^a \bar{\sigma} \chi \ H^\dagger \tau^a i \overleftrightarrow{D}_\mu H + \cdots$$

 $(T^{1})_{mn} = \frac{1}{2} \left[\sqrt{(j-n)(j+n+1)} \delta_{m,n+1} + \sqrt{(j+n)(j-n+1)} \delta_{m,n-1} \right]$

 $(T^{2})_{mn} = \frac{1}{2i} \left[\sqrt{(j-n)(j+n+1)} \delta_{m,n+1} - \sqrt{(j+n)(j-n+1)} \delta_{m,n-1} \right]$ $(T^{3})_{mn} = n \ \delta_{mn}$

(cf. Fierz identity for SU(2)_L indices)

→ The same discussion for these operators

$$\mathcal{L}_{\text{spl}} = \frac{\#}{\Lambda^{(4Y-1)}} \chi \chi (H^*)^{4Y} + \frac{\#}{\Lambda^{(4Y-1)}} \eta \eta (H)^{4Y} + \text{h.c.}$$

- Contribute to both $\Delta M_{\pm}~\&~\Delta M_{0}$
- ullet Dimension of Mass splitting operators depends on Y
- U(1) symme. ($\chi\mapsto e^{i\theta}\chi,\eta\mapsto e^{-i\theta}\eta$) should be broken to decompose Dirac fermion
- $\chi\chi$ (Hypercharge = 2Y) should be composed w/ $(H^*)^{4Y}$ (cf. Y=1/2 for H)

More relevant for small *Y*Let's find Neutron Star Windows!

$Y \neq 0$: Mass Splitting

Relevant operators for mass correction

$$\begin{split} \mathcal{L} \supset & -\frac{c_5}{\Lambda} \sum_{m=-j}^{j} \eta_{-m} \chi_m \; (H^\dagger H) \quad (\to \text{Overall shift only}) \\ & -\frac{c_5'}{\Lambda} \sum_{m=-j}^{j} (-1)^m \eta_{-m} (T_a)_{mn} \chi_m \; (H^\dagger \tau_a H) \\ & -\frac{c_s}{2\Lambda^{(4Y-1)}} \; \sum_{M,m,n} (\text{CG coeff.}) [(H)_{-M}^{4Y}]^* \chi_m \chi_{m'} - \frac{c_s'}{2\Lambda^{(4Y-1)}} \; \sum_{M,m,n} (-1)^{2Y+M} (\text{CG coeff.}) [(H)_{-M}^{4Y}]^* \eta_m \eta_{m'} + h.c. \end{split}$$

* (CG coeff.) = Clebsch-Gordan coefficient

	n = 2	n = 3	n = 4
	Y = 1/2	Y = 1	Y = 3/2
c_s, c_s' -term	dim. 5	dim. 7	dim. 9

 \rightarrow Contribution to ΔM_0 & ΔM_{\pm}

- Neutral inelastic process is important
- Window regions differ by each Multiplet

Results

4 benchmark multiplet models:

•
$$Y = 0$$
: (a) $n = 3$, $Y = 0$
(b) $n = 5$, $Y = 0$
• $Y \neq 0$: (c) $n = 2$, $Y = 1/2$
(d) $n = 3$, $Y = 1$

- DM capture via SD scattering is also investigated for $Y \neq 0$
 - Contribution from dim. 6 operators
 - DM-Z coupling induced if $c_s \neq c_s'$ (miss-alignment from maximal mixing)
 - EW loop correction
 - → Enlarge Neutron Star window
- Search strategy for each model
 - Y = 0: Direct detection & Neutron Star obs. are both promising
 - $Y \neq 0$: Neutron Star windows depend on hypercharge
 - → Complementarity is found for Doublet DM using EFT

 $\Lambda \, [\text{GeV}]$

Search strategy for each Electroweak Multiplet DM is revealed using the EFT framework

 $\Lambda \ [\text{GeV}]$

DM Annihilation into Neutrino

Standard Scenario: Neutron Star Heating by DM Annihilation

- (1) DM is captured by Neutron Star if DM-nucleon cross section exceeds threshold value
- DM annihilates into the SM particles, which is thermalized and release its energy (\simeq DM mass) into Neutron Star * If DM annihilates into non-SM particles, final state particles may escape from stars (cf. "Secluded DM" scenario)
- (3) Neutron Star Surface Temperature will be increased to reach JWST-sensitivity: $T_s \simeq \mathcal{O}(1000)~\mathrm{K}$

Question: Can we apply this standard scenario to **DM annihilation channel into neutrino**?

Answer: **Yes**, neutrino lose its energy before escaping from Neutron Star

$$L_{\nu} \simeq \frac{1}{\bar{n}_n \sigma_{n\nu}} \sim \frac{1}{\bar{n}_n \times G_{\rm F}^2 E_{\nu}^2} = 2.5 \text{ m} \left(\frac{100 \text{ MeV}}{E_{\nu}}\right)^2 \qquad \text{Neutrino mean free path} \qquad : L_{\nu} \\ \text{Neutron averaged density} \qquad : \bar{n}_n = 10^{37} \text{ cm}^{-3} \\ \text{Neutron-neutrino cross section} \qquad : \sigma_{n\nu} \propto G_{\rm F}^2 E_{\nu}^2$$

Initially, neutrino from DM pair annihilation has $E_{
u} \simeq m_{
m DM}$

- \rightarrow Neutrino should lose its energy (to reach $E_{\nu} \ll 100 \; \mathrm{MeV}$) to escape from star cf. Neutrino trapping in Supernova: ν ($E_{\nu}\lesssim 10~{
 m MeV}$) is trapped in core of Supernova core ($ho\sim 10^{11}~{
 m g/cm^3}$)
- → Neutrino may inject almost all its energy into Neutron Star before escaping

Indirect Detection @Compact Star

Escape from Star: "Secluded DM" [B. Bate

[B. Batell, M. Posselov, A. Ritz, Y. Shang (2010)]

Secluded DM: DM mainly annihilates into non-SM mediator first (which finally decay into the SM particles)

• If (mean free path of annihilation final state) > (star radius), mediator may escape from star

Mediator decays outside of star, which may bring astro-signatures of DM capture into star

This scenario is studied in the context of indirect detection

μ ... $\chi \chi$ annihilation γ , e, μ ... ψ

Indirect Detection @Neutron Star

- Target: Neutron Star
- Region: Galactic Center & Globular Cluster
- Channel: γ -ray (H.E.S.S. data is used)
- Result: DM-nucleon cross section is constrained (Constrained region scales as the product of DM & celestial body densities)

[R. K. Leane et al. (2021)]

Is Neutron Star Obs. Promising?

Can we really detect such inflated signatures?

- Recently, study of JWST sensitivity on DM heating is released [S. Chatterjee et al. [arXiv:2205.05048]]
- Neutron Star w/ (1) $T_{\rm s} \gtrsim 2400~{
 m K}$ & (2) 10 pc distance may be detectable in JWST (through NIRCAM filter)

Can we discriminate DM heating effects against other Neutron Star internal heating mechanisms?

- eg. Rotochemical heating \rightarrow Irrelevant if initial rotational period: P_0 is sufficiently large [K. Hamaguchi et al. (2019)]
- We need to study other internal heating mechanisms to conclude whether or not we can really detect DM heating
- If we observe Neutron Star w/ $T_s \lesssim 10^3~{
 m K}$, **DM w/ nucleon int. can be widely constrained** for GeV-PeV range

Can we control uncertainty in Neutron Star (astro obs.) compared w/ Direct Detection (Underground exp.)?

- We do have uncertainty from Astrophysics (eg. Internal unknown structure of compact star, initial condition)
 Nuclear Physics (eg. Nuclear force model under high density)
- Still, we may overcome some disadvantages in Direct Detection by combining Neutron Star obs.

To establish this new direction, continuous efforts to form fundamental phys. is mandatory