

HP-Ge detectors for controlling the very low levels of Radioactive Contaminations in the Gadolinium salt needed at the Super-Kamiokande Gd experiment

A global effort by Boulby Underground Laboratory, Canfranc Underground Laboratory and Kamioka Observatory

Presented by Luis Labarga, U. Autonoma Madrid

Main actors:

Boulby: E. Meehan, P. Scovell, M. Thiesse (U. Sheffield)
Canfranc (LSC): I. Bandac, L. Labarga (UAM), J.Pérez (now at *Jagiellonian U.)*Kamioka (KObs): H. Ito (ICRR, now at Tokyo U Science), K. Ichimura (ICRR, now at U. Tohoku)
++ M. Ikeda, H. Sekiya (ICRR), Y. Nakajima (ICRR, now at Phys. Dept. UT), P. Fernández (UAM, now at DIPC), M. Vagins (IPMU, UT), S. Ito (U. Okayama, now at KEK) Y. Koshio (U. Okayama),

UGAP2022 "Unraveling the History of the Universe and Matter Evolution with Underground Physics" 2022/06/13 Tokyo University of Science + Online

Introduction / Outline

- The Super-Kamiokande Gd project aims to improve the insight of SK into the Universe and its history. Main target is the discovery Diffuse Supernova Neutrino Background (DSNB)
- It needs of many tons of Gd salt; they must have very low RI levels not to jeopardize relevant SK physics and the main SK-Gd physics goals. Also carefull with light emitting contamination
- Gd "out of the shelf" in the market is "hot" \rightarrow a new purification process is mandatory
- And thus is a procedure to measure/control those extremely low RI Gd. Base systems:
 - o ICPMS only for very long lifetime RI (and other stable contaminants)
 - HP Ge detectors for all RI (that produce γ_s in their decays)
- the Gd salt is produced in many batches (typically 2 x ton); all must be screened. 27 batches screened for T1;
- but HP Ge techniques are slow → global effort needed: Boulby Underground Laboratory, Canfranc Underground Laboratory and Kamioka Observatory involved.
- Results, discussion etc.

0.3

=SN1987a

12

Φσ

18 20

Total Energy(MeV)

-3 10

> 6 8

~5 events/year in SuperK-Gd

10 12 14 16

10

10

total BG

18 20 22 24 26

MeV (total positron energy)

16

In addition:

. . .

- high precision solar- \mathbf{v} elements from available reactor vs
- SN early warning from Si burning vs
- Much improved background at proton decay searches

In addition:

. . .

- high precision solar-v elements from available reactor vs
- SN early warning from Si burning **v**s
- Much improved background at proton decay searches

In SK-<mark>Gd</mark>,

radioactive contamination in the Gd salt is an issue

- In SK-Gd many tons of Gd salt [Gd₂(SO₄)₃ 8H₂O] will be uniformly dissolved along the whole SK volume, thus it will any RI contamination in the Gd salt
 - \rightarrow this might jeopardize relevant low energy SK physics
 - \rightarrow and the main SK-Gd physics goals (mostly low E physics as well)
- → The Gd salt must have the corresponding very low RI levels

how low RI is needed (I) ?

Main radiation produced by radioactive isotopes from contaminations:

- Spontaneous Fission (SF) \rightarrow neutrons, γ_s (these can have significant energy)
- α decays $\rightarrow \alpha$ (⁴He₂) particles \rightarrow neutrons from (α , n) reactions
- β decays $\rightarrow \beta$ particles (electrons) rather dangerous
- nucleus stabilization after decay processes $\rightarrow \gamma_s$ (less energetic than SFs)
- special care when γ_s , neutrons, β are produced in coincidence

how low RI is needed (III) ?

DSNB

P. Fernández Menéndez, Ph.D. Thesis UAM 2017

- Expected signal at SK: ~5 events / year / FV
- Estimated bkg. from ²³⁸U Spontaneous Fission: ~ 0.12 [γ (E γ > 10.5 MeV) + 1 n] / year / FV / mBq

Low energy solar neutrino:

- Approximated solar neutrino candidate event rate at SK: ~260 candidates / day / FV
- Estimated background solar neutrino candidates at SK:

 Neutrons from (α, n) on Oxygen (α from U isotope decays): ~ 6 bkg. candidates / day / FV / mBq
 Th / Ra (β, γ): ~ 3 x 10³ bkg. candidates / day / FV / mBq

Radioactive chain	Part of the chain	SRN (mBq/kg)	Solar $\nu \ (mBq/kg)$		
23877	^{238}U	< 5	-		
	^{226}Ra	-	< 0.5		
232 T h	^{228}Ra	-	< 0.05		
111	^{228}Th	-	< 0.05		
23577	^{235}U	-	< 30		
	$^{227}Ac \ / \ ^{227}Th$	_	< 30		

	Gd ₂ (SO ₄) ₃ "regular market" survey: radioactivity contaminations (~2015)												
Chain	sub- chain	Co. A USA 09/04	Co. A USA 10/08	Co. B China 12/08	Co. A China 13/02	Co. B China 13/03	Co. A USA 13/08	Co. D China 13/07a	Co. D China 13/07b	Co. A USA 14/02			
²³⁸ U	²³⁸ U ²²⁶ Ra	$51{\pm}21\\8{\pm}1$	<33 $2.8{\pm}0.6$	$292{\pm}6$ $74{\pm}2$	$74{\pm}28$ $13{\pm}1$	$\begin{array}{c} 242{\pm}6\\ 13{\pm}2 \end{array}$	$71{\pm}20\\8{\pm}1$	$\begin{array}{c} 47{\pm}26\\ 5{\pm}1 \end{array}$	73 ± 27 6 ± 1	< 76 < 1.4			
²³² Th	228 Ra 228 Th	$\begin{array}{c} 11 \pm 2 \\ 28 \pm 3 \end{array}$	$\begin{array}{c} 270{\pm}16\\ 86{\pm}5\end{array}$	$1099{\pm}12 \\ 504{\pm}6$	$205{\pm}6$ $127{\pm}3$	$\begin{array}{c} 21{\pm}3\\ 374{\pm}6\end{array}$	$\begin{array}{c} 6\pm1\\ 159\pm3\end{array}$	$\begin{array}{c} 14{\pm}2\\ 13{\pm}1 \end{array}$	$\begin{array}{c} 3\pm1\\ 411\pm5\end{array}$	2 ± 1 29 ± 2			
²³⁵ U	$^{235}{ m U}_{ m 227}{ m Ac}$	<32 $214{\pm}10$	<32 1700 ± 20	$<\!\!112 \\ 2956{\pm}30$	$<\!\!25$ $1423{\pm}21$	$<\!\!25$ $175{\pm}42$	<32 $295{\pm}10$	$<\!$	<30 <18	< 1.8 190 ± 6			
others	$^{40} m K$ $^{138} m La$ $^{176} m Lu$	$29{\pm}5\ 8{\pm}1\ 80{\pm}8$	12 ± 3 - 21 ± 2	$101{\pm}10$ $683{\pm}15$ $566{\pm}6$	$60{\pm}7\ 3{\pm}1\ 12{\pm}1$	$18\pm 8 \\ 42\pm 3 \\ 8\pm 2$	$3\pm 2 \\ 5\pm 1 \\ 30\pm 1$	$3\pm 2 \ < 1 \ 1.6\pm 0.3$	$8\pm4\ <1\ <2$	$<5\ 23{\pm}1\ 2.5{\pm}0.6$			

But, how clean Gd can you get from regular world market?

Units are mBq/Kg; limits are at 95% CL s

work done mostly at the *Canfranc Underground Laboratory*

- Rather dirty
- Superk-Gd could not afford those amounts of RIs

ΙVΙ	Dical activities of s	aits in the marke	$t(\omega_2)$	15:			
(ex	tracted from prev	vious slide)				Physics based	d requirements
	Radioactive chain	Part of the chain	mBq/ŀ	g	SR	2 M (mBq/kg)	Solar ν (mBq/kg)
	23811	^{238}U	50			< 5	-
	2000	^{226}Ra	5			-	< 0.5
	232771	^{228}Ra	10 mu		ust !	-	< 0.05
	1 N	^{228}Th	100			-	< 0.05
	23577	^{235}U	32			-	< 30
		$^{227}Ac \ / \ ^{227}Th$	300			-	< 30

activities of salts in the market @2015.

→ a new, non standard purification process is a must

→ successful R&D program by Nippon Ytrium Co. (NYC) and ICRR – U. Tokyo

- see the soon-to-be-published publication with all these works -

- this "very clean" [$Gd_2(SO_4)_3 \bullet 8H_2O$] needs to be produced in 0.5 ton batches; •
- SK-Gd phase T1: 27 batches total

In addition, the presence of fluorescent ions such as Ce may impact the detection of Cherenkov light. The concentration of Ce ions is also restricted in the $Gd_2(SO_4)_3 \cdot 8H_2O$ material: < 50 ppb

→ a procedure to measure/control those extremely low RI Gd at the 27 batches is also a must

- those nuclides in radioactive chains which contaminate Gd₂(SO₄)₃ · 8H₂O may not be in secular equilibrium with their long-lived parents and daughters. Several techniques ought to be used:
 - high purity Germanium (HPGe) γ spectrometry to measure the activity of the early and late parts of all decay chains which could affect SK-Gd physics sensitivities.
 - inductively-coupled plasma mass spectrometry (ICP-MS) to measure the long-lived members of the U and Th decay chains (²³⁸U and ²³²Th isotopes). Also for Ce
- Special ICP-MS techniques* developed in KObs to reach SKGD sensitivities for ²³⁸U, ²³²Th isotopes
- Regular ICP-MS (KObs, UAM) can reach sensitivities well below the Ce limit
- HPGe γ spectrometry can also infer the activity of long-lived parent or daughters
- Only HPGe γ spectrometry is sensitive to the SK-Gd requirements for late-chain ²³⁸U (²²⁶Ra equilibrium) and the whole ²³⁵U chain. It is also sensitive to late-chain ²³²Th (²²⁸Th equilibrium) but not to concentrations down < 0.05 mBq/kg. Typical reaches are instead ~ 0.2 mBq/kg
- HPGe techniques are slow → global effort needed: Boulby Underground Laboratory, Canfranc Underground Laboratory and Kamioka Observatory involved
 (*) S. Ito et al. PTEP-2017-113H01

Main detectors for SK-Gd are **Belmont** and **Merrybent**, p-type, produced by Mirion (relative efficiencies 160% and 100%)

- Inside of shielding purged with boil-off N₂ gas.
- Gd is packed in Marinelli beakers 448G-E (Ga-Ma & Associates, Inc.)

- Main detectors for SK-Gd: Asterix and geOroel (both p-type by Mirion)
- Gd in Marinelli beakers (Ga-Ma and Asso- ciates, Inc. model 445N-E).
- extra layer of shielding made of methacrylate surrounding the lead shielding.
- slight over-pressure created inside the copper shielding by flushing \sim 274 L/h of a mixture of N₂ and Rn-Free air.

two ways.

- A molecular recognition resin embedded in the "Empore Radium Rad Disk" (**) was used to adsorb Ra from the Gd₂(SO₄)₃ · 8H₂O and increase its concentration. Disk is placed on top Ge. (**) S. Ito et al. *PTEP*-2018-091H01, S. Ito et al. *PTEP*-2020-093H02
- Use large amounts of $Gd_2(SO_4)_3 \cdot 8H_2O$ (~10 Kg), filling the volume inside shielding \rightarrow optimizes relevant variable for measurement [efficiency \cdot mass]

Max. mass is at cubic configuration. Others are Marinelli type configurations

Cross-check by D. de Hoz, End-Degree-work, UAM 2021

Main HPGe detectors used for SK-GD T1 screening

Lab	Detector	Mass	FWHM@ 1332 keV	COUNTS Integral	$[/\mathrm{kg/day}]$ $^{208}\mathrm{Tl},$	²¹⁴ Bi,	⁶⁰ Co,	⁴⁰ K,	SK-Gd T1
	Detector	[kg]		60-2700	2614	609	1332	1461	total
				keV	$_{\rm keV}$	keV	keV	keV	$\operatorname{samples}$
BUGS	Belmont	3.2	1.92	90.0	0.12	0.67	0.47	0.58	8
BUGS	Merrybent	2.0	1.87	145.0	0.23	2.15	0.47	1.16	5
LSC	GeOroel	2.31	2.22	128.7	0.4	1.1	0.1	0.4	3
LSC	Asterix	2.13	1.92	171.3	0.2	0.7	0.3	0.3	11
LSC	GeAnayet	2.26	1.99	461.2	3.68	0.71	0.16	0.74	1
Kamio	ka Lab-C Ge	1.68	2.39	104.5	0.1	0.4	0.4	0.3	22

Table 3: HP-Ge detectors used; main characteristics, background counts at relevant gamma and number of SK-Gd T1 samples screened in each of them

In general very low backgrounds at key gamma lines

For illustration: measured $\boldsymbol{\gamma}$ spectra in a standard low RI Gd salt

For comparison: γ spectra measured in a highly RI contaminated Gd salt

Nothing ! Only ¹⁷⁶Lu (typical in rare earths) go above background

Minimum Detectable Activity of our detectors (illustrated by two important γ lines)

SK-Gd limits reached within "couple of weeks"

SK-Gd limits not reached

HP-Ge results (see additional materials for larger size)

		Detector / Method	Activity (mBq/kg, 95% c.l.)										
Sample	Laboratory	Detector / Method	23	³⁸ U	232	Th		²³⁵ U					
Sampie	Laboratory		²³⁸ U eq.	²²⁶ Ra eq.	²²⁸ Ra eq.	²²⁸ Th eq.	²³⁵ U eq.	²²⁷ Ac/ ²²⁷ Th eq.	40 K	^{138}La	^{176}Lu	^{134}Cs	^{137}Cs
		SK-Gd requirement \rightarrow	<5	< 0.5	< 0.05	< 0.05	<30	<30	-	-	-	-	-
17090X	Canfranc	ge-Asterix?	<12	< 0.21	< 0.30	< 0.30	< 0.42	<1.6	<1.0	<14	$< 0.13 \pm 0.03$	< 0.07	< 0.13
180702	Canfranc	ge-Asterix	< 6.2	< 0.12	< 0.22	< 0.21	< 0.3	<1.1	< 0.5	0.13 ± 0.04	$< 0.24 \pm 0.03$	< 0.07	< 0.08
180703	Canfranc	ge-Asterix	<9.0	< 0.24	< 0.44	< 0.38	< 0.3	<1.1	< 0.5	< 0.14	$< 0.22 \pm 0.03$	<<0.07	<<0.07
190302	Canfranc	ge-Asterix	<9.8	< 0.32	< 0.35	< 0.29	< 0.42	< 0.92	< 1.6	$0.26 {\pm} 0.1$	< 0.21	< 0.09	< 0.09
190303	Canfranc	ge-Asterix	<8.4	< 0.3	< 0.44	< 0.29	< 0.39	< 0.81	< 1.5	0.45 ± 0.09	0.16 ± 0.12	< 0.08	< 0.09
190304	Canfranc	ge-Asterix	<11	< 0.42	< 0.55	< 0.36	< 0.52	<1.22	< 2.1	0.40 ± 0.11	< 0.21	< 0.13	< 0.14
100500	Boulby	Belmont	< 5.4	< 0.49	< 0.95	< 0.48	< 0.36	<1.7	< 2.8	< 0.28	0.49 ± 0.08	-	< 0.10
190502	Kamioka	Lab-C Ge	<25.0	< 0.75	< 0.52	< 0.36	<9	7.9 ± 0.8	<1.63	< 0.37	0.68 ± 0.18	< 0.16	< 0.22
100604	Boulby	Belmont	< 9.80	< 0.47	< 0.61	< 0.50	< 0.45	<2.33	<2.45	< 0.21	0.97 ± 0.11	-	< 0.08
190604	Kamioka	Lab-C Ge	<26.9	< 0.68	< 0.55	< 0.33	<4.6	<1.2	<2.02	< 0.36	1.43 ± 0.19	< 0.19	< 0.34
	Boulby	Merrybent	<13.1	< 0.84	< 0.79	< 0.63	< 0.37	2.6 ± 0.6	<3.27	< 0.29	1.23 ± 0.16	-	< 0.13
190606	Kamioka	Lab-C Ge	<17.3	1.04 ± 0.38	< 0.91	< 0.94	<8.3	2.6 ± 1.3	<3.20	< 0.26	0.74 ± 0.29	< 0.39	< 0.50
	Kamioka	Lab-C Ge, Ra Disk	-	< 0.31	< 0.82	< 0.48	-	-	-	-	-	-	-
190607	Canfranc	ge-Oroel	<7.2	< 0.30	< 0.79	< 0.42	< 0.30	< 0.96	< 1.59	< 0.18	< 0.13	< 0.12	< 0.09
	Canfranc	ge-Asterix	<8.8	< 0.53	< 0.43	< 0.35	< 0.40	< 0.88	< 1.50	< 0.14	< 0.25	< 0.08	< 0.09
190608	Kamioka	Lab-C Ge	<23.2	0.99 ± 0.30	<1.38	< 0.80	<4.3	<1.8	<2.15	< 0.49	< 0.51	< 0.21	< 0.30
	Kamioka	Lab-C Ge, Ra Disk	-	< 0.63	< 0.52	< 0.61	-	-	1	-	-	-	-
100702	Canfranc	ge-Oroel	<11.0	< 0.45	<1.11	< 0.50	< 0.37	$2.4{\pm}0.9$	< 1.5	< 0.20	0.23 ± 0.13	< 0.12	< 0.11
190702	Kamioka	Lab-C Ge	<12.0	< 0.63	<1.08	< 0.33	<3.4	<1.6	< 1.99	< 0.28	0.28 ± 0.12	< 0.17	< 0.28
190703	Canfranc	ge-Asterix	<8.4	< 0.35	< 0.51	< 0.50	< 0.45	1.8 ± 1.0	< 1.7	< 0.20	0.51 ± 0.13	< 0.10	< 0.10
190704	Boulby	Belmont	<9.8	<	<0	<0.75		<1.39	$<\!2.01$	<0.20	<0.10		< 0.10
100706	Boulby	Belmont	< 9.5	< 0.45	< 0.66	$0.53 {\pm} 0.12$	< 0.28	<1.32	<2.09	< 0.25	< 0.25	-	< 0.13
190700	Kamioka	Lab-C Ge	<9.4	0.88 ± 0.26	< 0.50	<0.86	< .26	<1.10	< 1.9	<0 29	< 0.19	< 0.19	< 0.26
190801	Canfranc	ge-Anayet	<28	0.39 ± 0.32	< 1.5	< 0.77	< .80	<1.17	< 1.44	<0.18	2.7 ± 0.2	< 0.23	< 0.18
190803	Canfranc	ge-Asterix	<7	< 0.31	0.39 ± 0.21	0.55 ± 0.22	< 0.36	< 0.74	<1.4	< 0.09	3.5 ± 0.1	< 0.08	< 0.07
190804	Boulby	Belmont	<11	< 0.46	0.67 ± 0.21	< 0.67	< .38	<1.98	< 2.57	< 20	4.60 ± 0.24	-	< 0.10
190805	Canfranc	ge-Oroel	< 9.3	< 0.52	0.53 ± 0.44	0.57 ± 0.40	< .44	< 0.98	<1.18	<0.10	9.44 ± 0.10	< 0.10	< 0.09
190806	Boulby	Merrybent	<8.09	< 0.43	0.49 ± 0.11	1.27 ± 0.13	< 0.26	<1.23	< 1.78	< 0.14	9.35 ± 0.22	-	< 0.07
190901	Canfranc	ge-Asterix	<8.6	< 0.30	0.42 ± 0.27	$0.37 {\pm} 0.27$	<	<1.20	< 1.47	<015	4.85 ± 0.12	< 0.10	< 0.13
190902	Boulby	Belmont	< 5.52	< 0.26	0.53 ± 0.10	0.63 ± 0.09	< .33	<1.22	<1.32	<010	8.78 ± 0.18	-	< 0.05
190903	Canfranc	ge-Asterix	<8.9	< 0.37	0.59 ± 0.28	$0.35 {\pm} 0.28$	< 0.54	<1.7	<1.5	< 0.14	4.9 ± 0.1	< 0.10	< 0.09
100005	Kamioka	Lab-C Ge	<8.6	< 0.21	0.72 ± 0.20	0.70 ± 0.16	<₫.2	<1.1	< 1.57	<009	6.6 ± 0.2	< 0.09	< 0.13
190902	Kamioka	Lab-C Ge, Ra Disk	-	< 0.29	0.58 ± 0.25	< 0.39		-	-		-		-
200101	Kamioka	IPMU-N	<87	<2.8	<4.0	<2.5	<18	<4.5	<67	-	5.2 ± 0.9	-	<1.2
200103	Kamioka	IPMU-N	<114	<2.4	<7.7	<2.4	<17	<4.1	<19		< 0.91	-	<1.0
200104	Kamioka	IPMU-P	<95.1	<2 °	<3.0	2.8	15	<9.0	<31		< <u>0.8</u> 2	-	< 0.64

ICPMS results

Basically OK

- first half of production: batch purities OK
- latter half: one order of magnitude more ²²⁸Ra than specs. Correlated with an intrinsically large contaminations in raw Gd₂O₃ (well above the typical ~200 ppb, ¹⁷⁶Lu also seen)
- Increase of background solar-v candidates from this ²²⁸Ra, similar as cand. in pure water phases of SK:
 → To SK but, any future loading in SK will have the Gd₂(SO₄)₃·8H₂O free of that contamination.
 - \rightarrow new method to remove the ²²⁸Ra (from Gd₂O₃) recently established

see the soon-to-be-published publication with all these works

<u>A summary of HPGe and ICP-MS meas. on all $Gd_2(SO_4)_3 \cdot 8H_2O$ batches for T1 phase of SK-Gd</u>

- The total SK-Gd radioactivity budget is estimated for a 0.2% loading (130 tonnes of $Gd_2(SO_4)_3 \cdot 8H_2O$)
- When finite activities are obtained: extrapolate to the total mass dissolved in their corresponding batches and add these statistically → FM
- When only upper limits are obtained: extrapolate to the total mass dissolved in their corresponding batches and add these → UL

Chain	Part of	+ .	SK-Gd Rec	uirements	HPG	ICP-MS	
	Chain	$\iota_{1/2}$	Specific	total	EM		Total
			Activity	budgett	(Ba)		(Ba)
			(mBq/kg)	(Bq)	(Pd)	(DQ)	(Dq)
23811	$^{238}\mathrm{U}$	4.5 Gy	< 5	650	0.0 ± 1.1	< 260	0.34 ± 0.15
	226 Ra	1602 y	< 0.5	65	0.76 ± 0.20	< 8.9	_
	232 Th	14 Gy	< 0.05	6.5	—	_	0.25 ± 0.07
232 Th	228 Ra	5.7 y	< 0.05	6.5	2.16 ± 0.33	< 15.5	—
	$^{228}\mathrm{Th}$	1.9 y	< 0.05	6.5	2.38 ± 0.28	< 10.8	—
23511	$^{235}\mathrm{U}$	0.7 Gy	< 30	3900	0.0 ± 1.1	< 32	—
0	$^{227}\mathrm{Ac}$	21.7 y	< 30	3900	3.3 ± 1.1	< 26	—

Additional procedures in the purification process were needed [and successfully achieved for phase T1.5 t.b.p.]

Summary / Conclusions / Outlook

- 13.2 tons of Gd₂(SO₄)₃ · 8H₂O (Gd salt) dissolved into Super Kamiokande in 2020 (SK Gd phase T1)
- impact of radioactive impurities in the Gd salt on DSNB search and solar-v observation studied:
 → must reduce RI levels by ~3 orders of magnitude from commercially available Gd salt;
 → a method to remove impurities from Gd₂O₃ was successfully developed.
- All the produced Gd salt was screened. Because of the low RI levels we need to use ICP-MS and HPGe
 → HPGe measurements require a long time to obtain sufficient sensitivity
 → establish cooperation among best HPGe det. at Boulby (UK), LSC (Spain), and Kamioka (Japan)
- first half of production OK. Second half: one order of magnitude more ²²⁸Ra than maximum

 → Increase of bkg solar-v candidates from this ²²⁸Ra, similar as bkg. in pure water phases of SK:
 → dissolve into SK BUT, any future loading in SK will have the Gd salt free of that contamination.
 → new method to remove the ²²⁸Ra (from Gd₂O₃) recently established
- The 26 tons of Gd₂(SO₄)₃·8H₂O currently being introduced into SK (SK Gd phase T1.5) are showing, for the time being, the required high-purity.

additional

		Detector / Methed		Activity (mBq/kg, 95% c.l.)									
Sample	Laboratory	Detector / Method	23	⁸⁸ U	232	Th		²³⁵ U					
Sample	Laboratory		²³⁸ U eq.	²²⁶ Ra eq.	²²⁸ Ra eq.	²²⁸ Th eq.	²³⁵ U eq.	227 Ac/ 227 Th eq.	40 K	138 La	176 Lu	^{134}Cs	^{137}Cs
		SK-Gd requirement \rightarrow	<5	< 0.5	< 0.05	< 0.05	<30	<30	-	-	-	-	-
17090X	Canfranc	ge-Asterix?	<12	< 0.21	< 0.30	< 0.30	< 0.42	<1.6	<1.0	<14	$< 0.13 \pm 0.03$	< 0.07	< 0.13
180702	Canfranc	ge-Asterix	< 6.2	< 0.12	< 0.22	< 0.21	< 0.3	<1.1	< 0.5	$0.13 {\pm} 0.04$	$< 0.24 \pm 0.03$	< 0.07	< 0.08
180703	Canfranc	ge-Asterix	<9.0	< 0.24	< 0.44	< 0.38	< 0.3	<1.1	< 0.5	< 0.14	$< 0.22 \pm 0.03$	<<0.07	<<0.07
190302	Canfranc	ge-Asterix	<9.8	< 0.32	< 0.35	< 0.29	< 0.42	< 0.92	<1.6	0.26 ± 0.1	< 0.21	< 0.09	< 0.09
190303	Canfranc	ge-Asterix	<8.4	< 0.3	< 0.44	< 0.29	< 0.39	< 0.81	<1.5	$0.45 {\pm} 0.09$	$0.16 {\pm} 0.12$	< 0.08	< 0.09
190304	Canfranc	ge-Asterix	<11	< 0.42	< 0.55	< 0.36	< 0.52	<1.22	<2.1	$0.40 {\pm} 0.11$	< 0.21	< 0.13	< 0.14
100500	Boulby	Belmont	< 5.4	< 0.49	< 0.95	< 0.48	< 0.36	<1.7	<2.8	< 0.28	$0.49 {\pm} 0.08$	-	<0.10
190502	Kamioka	Lab-C Ge	$<\!25.0$	< 0.75	< 0.52	< 0.36	<9	$7.9{\pm}0.8$	<1.63	< 0.37	$0.68 {\pm} 0.18$	< 0.16	< 0.22
100604	Boulby	Belmont	< 9.80	< 0.47	< 0.61	< 0.50	< 0.45	<2.33	$<\!2.45$	< 0.21	$0.97 {\pm} 0.11$	-	< 0.08
190004	Kamioka	Lab-C Ge	$<\!26.9$	< 0.68	< 0.55	< 0.33	<4.6	<1.2	<2.02	< 0.36	$1.43 {\pm} 0.19$	< 0.19	< 0.34
	Boulby	Merrybent	<13.1	< 0.84	< 0.79	< 0.63	< 0.37	$2.6 {\pm} 0.6$	<3.27	< 0.29	$1.23 {\pm} 0.16$	-	< 0.13
190606	Kamioka	Lab-C Ge	<17.3	$1.04{\pm}0.38$	< 0.91	< 0.94	<8.3	$2.6{\pm}1.3$	<3.20	< 0.26	$0.74{\pm}0.29$	< 0.39	< 0.50
	Kamioka	Lab-C Ge, Ra Disk	-	< 0.31	< 0.82	< 0.48	-	-	-	-	-	-	-
190607	$\operatorname{Canfranc}$	ge-Oroel	< 7.2	< 0.30	< 0.79	< 0.42	< 0.30	< 0.96	< 1.59	< 0.18	< 0.13	< 0.12	<0.09
	Canfranc	ge-Asterix	< 8.8	< 0.53	< 0.43	< 0.35	< 0.40	< 0.88	< 1.50	< 0.14	< 0.25	< 0.08	< 0.09
190608	Kamioka	Lab-C Ge	$<\!23.2$	$0.99 {\pm} 0.30$	<1.38	<0.80	<4.3	<1.8	$<\!2.15$	< 0.49	< 0.51	< 0.21	< 0.30
	Kamioka	Lab-C Ge, Ra Disk	-	< 0.63	< 0.52	< 0.61	-	-	-	-	-	-	-
190702	Canfranc	ge-Oroel	<11.0	< 0.45	<1.11	< 0.50	< 0.37	$2.4{\pm}0.9$	<1.5	< 0.20	$0.23 {\pm} 0.13$	< 0.12	<0.11
100102	Kamioka	Lab-C Ge	$<\!12.0$	< 0.63	<1.08	< 0.33	<3.4	<1.6	<1.99	< 0.28	$0.28 {\pm} 0.12$	< 0.17	< 0.28
190703	Canfranc	ge-Asterix	<8.4	< 0.35	< 0.51	< 0.50	< 0.45	1.8 ± 1.0	<1.7	< 0.20	$0.51 {\pm} 0.13$	< 0.10	<0.10
190704	Boulby	Belmont	<9.8	< 0.44	<0.66	<0.75	< 0.29	<1.39	<2.01	< 0.25	<0.18	-	<0.10
190706	Boulby	Belmont	< 9.5	< 0.45	<0.66	$0.53 {\pm} 0.12$	< 0.28	<1.32	<2.09	< 0.25	< 0.25	-	< 0.13
100100	Kamioka	Lab-C Ge	< 9.4	0.88 ± 0.26	< 0.50	<0.86	$<\!2.26$	<1.10	<1.9	< 0.29	<0.19	< 0.19	< 0.26
190801	Canfranc	ge-Anayet	$<\!28$	0.39 ± 0.32	<1.5	<0.77	< 0.80	<1.17	<1.44	< 0.18	2.7 ± 0.2	< 0.23	<0.18
190803	Canfranc	ge-Asterix	<7	< 0.31	0.39 ± 0.21	0.55 ± 0.22	< 0.36	< 0.74	<1.4	< 0.09	3.5 ± 0.1	< 0.08	< 0.07
190804	Boulby	Belmont	<11	< 0.46	0.67 ± 0.21	<0.67	< 0.38	<1.98	<2.57	< 0.20	$4.60 {\pm} 0.24$	-	<0.10
190805	Canfranc	ge-Oroel	<9.3	< 0.52	0.53 ± 0.44	0.57 ± 0.40	< 0.44	< 0.98	<1.18	< 0.10	$9.44 {\pm} 0.10$	< 0.10	< 0.09
190806	Boulby	Merrybent	< 8.09	< 0.43	0.49 ± 0.11	1.27 ± 0.13	< 0.26	<1.23	<1.78	< 0.14	$9.35 {\pm} 0.22$	-	< 0.07
190901	Canfranc	ge-Asterix	<8.6	< 0.30	$0.42 {\pm} 0.27$	$0.37 {\pm} 0.27$	< 0.46	<1.20	<1.47	< 0.15	$4.85 {\pm} 0.12$	< 0.10	<0.13
190902	Boulby	$\operatorname{Belmont}$	$<\!5.52$	< 0.26	$0.53 {\pm} 0.10$	$0.63 {\pm} 0.09$	< 0.33	< 1.22	< 1.32	< 0.10	$8.78{\pm}0.18$	-	< 0.05
190903	Canfranc	ge-Asterix	< 8.9	< 0.37	$0.59{\pm}0.28$	$0.35{\pm}0.28$	< 0.54	<1.7	< 1.5	< 0.14	$4.9{\pm}0.1$	< 0.10	< 0.09
100005	Kamioka	Lab-C Ge	< 8.6	< 0.21	$0.72 {\pm} 0.20$	0.70 ± 0.16	< 5.2	<1.1	< 1.57	< 0.09	$6.6{\pm}0.2$	< 0.09	< 0.13
130300	Kamioka	Lab-C Ge, Ra Disk	-	<0.29	0.58 ± 0.25	<0.39	-	-	-	-	-	-	- 1
200101	Kamioka	IPMU-N	<87	<2.8	<4.0	<2.5	<18	<4.5	<67	-	$5.2 {\pm} 0.9$	-	<1.2
200103	Kamioka	IPMU-N	<114	$<\!2.4$	<7.7	<2.4	$<\!17$	<4.1	<19	Ξ	< 0.91	-	<1.0
200104	Kamioka	IPMU-P	<95.1	<2.8	<3.0	<2.8	<15	<9.0	<31	-	<0.82	-	<0.64

neutrons

- there are many, naturally produced
- relevant are neutrons produced from α decays in the naturally present radioactive chains

• for instance that of ²³⁸U

• **α**s interact with the water :

$${}^{18}O + {}^{4}\alpha(\sim 6MeV) \rightarrow {}^{22}Ne * [\sim 15MeV] \rightarrow$$

$$\times {}^{22}Ne + \gamma$$

$$\times {}^{22}Ne + \gamma$$

$$\times {}^{21}Ne * [\sim 12.5MeV] + n(\sim 2.5MeV) \rightarrow {}^{20}Ne + 2 \cdot n(\sim 2.3MeV)$$
P. Fernández Menéndez, Ph.D. Thesis UAM 2017

Main radiation produced by RI: neutrons

example from ²³²Th, ²³⁵U, ²³⁸U chains in SuperK-Gd for "market standard" Gd₂(SO₄)₃

$$N_{rad}^{neutrons} = 316.3 \frac{single \ neutrons}{day \cdot SKFV}$$