Formation and migration history of the Solar system in the Galaxy using **Short-lived radioactive nuclides**

Yusuke Fujimoto University of Aizu

What is the short-lived radioactive nuclide (SLR)?

SLR	Daughter	$T_{1/2}(Myr)$
²⁶ Al	²⁶ Mg	0.717(24)
¹⁰ Be	¹⁰ B	1.388(18) ^a
⁵³ Mn	⁵³ Cr	3.74(4)
¹⁰⁷ Pd	¹⁰⁷ Ag	6.5(3)
¹⁸² Hf	^{182}W	8.90(9)
²⁴⁷ Cm	²³⁵ U	15.6(5)
¹²⁹ I	¹²⁹ Xe	15.7(4)
⁹² Nb	⁹² Zr	34.7(2.4)
¹⁴⁶ Sm	¹⁴² Nd	68 ^e /103 ^f
³⁶ Cl	³⁶ S, ³⁶ Ar	0.301(2)
⁶⁰ Fe	⁶⁰ Ni	2.62(4)
²⁴⁴ Pu	i	80.0(9)
⁷ Be	⁷ Li	53.22(6) days
⁴¹ Ca	⁴¹ K	0.0994(15)
²⁰⁵ Pb	²⁰⁵ Tl	17.3(7)
¹²⁶ Sn	¹²⁶ Te	0.230(14)
¹³⁵ Cs	¹³⁵ Ba	2.3(3)
⁹⁷ Tc	⁹⁷ Mo	4.21(16)
⁹⁸ Tc	⁹⁸ Ru	4.2(3)
		Luga

Origin sites	SLRs
Low-mass AGBs	¹⁰⁷ Pd, ¹⁰⁸ Pd
(= Asymptotic Giant Branch star)	135 Cs, 133 Cs
(¹⁸² Hf, ¹⁸⁰ Hf
	²⁰⁵ Pb, ²⁰⁴ Pb
Massive and	²⁶ Al
Super-AGBs	⁴¹ Ca, ³⁶ Cl, ⁶⁰ Fe
-	¹⁰⁷ Pd, ¹³⁵ Cs, ¹⁸² Hf
WR stars (= Wolf–Rayet stars)	²⁶ Al
	⁴¹ Ca, ³⁶ Cl
	⁹⁷ Tc, ¹⁰⁷ Pd, ¹³⁵ Cs, ²⁰⁵ Pb
CCSNe	²⁶ Al, ²⁷ Al
(= Core Collapse Supernovae)	⁶⁰ Fe
	³⁶ Cl, ⁴¹ Ca
	³⁵ Cl, ⁴⁰ Ca
	⁵³ Mn, ⁵⁵ Mn, ⁵⁶ Fe
	¹⁰⁷ Pd, ¹²⁶ Sn, ¹³⁵ Cs
	¹²⁹ I, ¹⁸² Hf, ²⁰⁵ Pb
	⁹² Nb, ⁹² Mo, ⁹⁷ Tc, ⁹⁸ Tc
	¹⁴⁴ Sm, ¹⁴⁶ Sm
	¹⁰ Be, ⁹² Nb
SNIa (= Type Ia Supernovae)	⁵³ Mn, ⁵⁵ Mn, ⁵⁶ Fe
	⁹² Nb, ⁹³ Nb, ¹⁴⁶ Sm, ¹⁴⁴ Sm
	⁹⁷ Tc, ⁹⁸ Tc, ⁹⁸ Ru
NSMs/special CCSNe	¹⁰⁷ Pd, ¹⁰⁸ Pd, ¹²⁶ Sn, ¹²⁴ Sn
(= Neutron Star Merger)	¹³⁵ Cs, ¹³³ Cs, ¹²⁹ I, ¹²⁷ I
$\mathbf{U} = \mathbf{V}$	¹⁸² Hf, ¹⁸⁰ Hf
	²⁴⁷ Cm, ²³⁵ U, ²⁴⁴ Pu, ²³⁸ U
novae	²⁶ Al
CRs (= Cosmic rays)	⁷ Be, ¹⁰ Be, ⁹ Be
	²⁶ Al, ⁴¹ Ca, ³⁶ Cl, ⁵³ Mn

Why is massive star important?

Sun-like Star

Protostars

Billions years per one cycle

Red Giant

Star-Forming Nebula

Neutron Star

Planetary Nebula

A 64 1

White Dwarf

- 1. Very luminous (heat and ionize surrounding gas)
- 2. Explode as supernova (disperse surroundings gas & cloud)
- 3. Distribute heavy elements
- 4. Much shorter life cycle

Influential in galactic-scale star formation and Milky Way evolution

This is why we focus on 26AI and 60Fe.

Where can we find SLRs?

1. Meteorite

3. Galactic γ -ray emissions

2. Deep-sea and Antarctica

1.201.602.002.402.80

1. The birth environment of the early Solar system 4.6 Gyr ago

2. The local interstellar environment of the current Solar system

3. The formation mechanism of the Milky Way's spiral arms

Outline

Topic 1: Solar birth environment

Significant quantities of SLRs in early Solar system

• The daughter products of SLRs are found in primordial materials in meteorites, ex. CAI and chondrules

How did the Solar birth environment get SLRs?

Isotopic abundance ratios are measured

SLR	Daughter	Half-life (Myr)	Main source	Early Solar system ratio
26AI	26Mg	0.717	WR winds & CCSNe	5.23E-05
60Fe	60Ni	2.62	CCSNe	1.01E-08

Proposed enrichment scenarios

(b)

Gritschneder et al. 2012 See also Cameron & Truran 1977, Boss 2017, etc.

1.0 0.0

0.0

-1.0

0.0

1.0 0.0

1.0

3. Sequential star-formation events in a molecular cloud

Gounelle & Meynet 2012 See also Young 2014, Kuffmeier et al. 2016

However, the massive stellar feedback is a widespread contamination mechanism, BUT, galaxy-scale dynamics have not been considered

Chemo-hydrodynamical simulation of the entire Milky Way

 Enzo: 3D adaptive mesh refinement (AMR) hydrodynamics code

Include almost all necessary physics

 (radiative cooling and heating, self-gravity, star formation and massive stellar feedback)

• SLR injection from massive stars, and time decay $T_{1/2}$ = 2.62 Myr for ⁶⁰Fe

0.72 Myr for ^{26}Al

Topic 1: Solar birth environment

Results: SLR abundances in newborn stars

Compare with meteoritic Solar abundance

Fujimoto, Krumholz & Tachibana 2018, MNRAS

Stars form in an already-enriched SLR bubble contaminated by previous generations of massive stars

The Solar system has been affected by nearby massive stars for recent several Myr

Credit: NASA/JPL-Caltech/ESO/R. Hurt

Three independent pieces of observational evidence

2. ²⁶Al-line gamma-ray emission map of all-sky 1. Soft X-ray (~ 1/4 keV) emission map of all-sky

Snowden et al. 1995

3. Live ⁶⁰Fe found in deep-sea crusts, Antarctic snow, and lunar surface (geological evidence)

	Sample	Origin	⁶⁰ Fe flux [atoms cm ⁻
nie <i>et al.</i> [12]	Ferromanganese crust	South Pacific	0.5–5
nie <i>et al.</i> [13]	Ferromanganese crust	Equatorial Pacific	1–5
allner et al. [14]	Sediments	Indian Ocean	20-40
	Ferromanganese crusts	Equatorial Pacific	1–3
	Ferromanganese nodules	South Atlantic	0.2–0.5
dwig et al. [15]	Sediments	Equatorial Pacific	0.4–1.2
miani <i>et al</i> . [16]	Lunar regolith	Moon	20-100
is work	Surface snow	Antarctica	$1.2^{+0.6}_{-0.5}$

Table from Koll et al. 2019

The Solar system has been affected by nearby massive stars for recent several Myr

Credit: NASA/JPL-Caltech/ESO/R. Hurt

How did such an environment form in a relation to the global galactic dynamics?

Topic 2: Current solar environment

N-body + hydrodynamics simulation of the Milky Way

Star

• Self-consistent galactic spiral arms: dark matter and old stellar populations using N-body particles

²⁶Al

(2) A broad distribution of ^{26}Al observed in the γ -ray sky-maps (3) The mean flux of diffuse soft X-ray emission.

Stars who meet all three conditions are uncommon ($\sim 2\%$), but not exceptionally rare

- Investigated the location of stars whose environments are consistent with the observations:
 - (1) The 60 Fe influx onto the Earth detected in deep-sea archives and Antarctic snow

Topic 2: Current solar environment

Where are such Sun-like stars located in the galactic disc?

They are located inside or close to big SLR bubbles created by massive stars on the galactic spiral arms.

How long do such Sun-like stars stay in the bubble?

Case 1: The duration is ~ 100 Myr

⁶⁰Fe

It depends. The duration is governed by the crossing time of stars across the spiral arm

⁶⁰Fe

Fujimoto, Krumholz, Inutsuka, Boss, & Nitter 2020, MNRAS

Is the Milky Way's spiral arm a density wave? Or a material arm?

Radius

Gas compression and star formation occur on the <u>leading edge</u> of the arms where the gas shocks upon entry.

This is still under debate

Radius

Gas slowly falls into spiral arms from both leading and trailing sides as a colliding flow, and then stars form in the <u>middle</u> of the spiral arm.

The key: galactic gamma-ray observation shows systematic excess of rotation velocity of 26AI, ~ 200km/s

Blue shaded region: 26Al Colored region: CO (1-0)

Kretschmer+ 2013

Hydro simulation with 26AI, using rigid rotation spiral arm potential

Some previous works support the density wave

Massive stars form at the leading edges of the arm, and 26AI blow out into the low-density regions forward of the arm

Krause+ 2015

What about my simulation in which spiral arms are material arms?

Projected Gas Mass

No systematic excess of 26AI in the rotation curve

Synthetic 26AI emission maps for two different positions

from nearby massive stars, like Local Bubble

The material arm scenario is still alive

The observed excess of 26AI velocity may be the product of foreground emission

Fujimoto, Krumholz & Inutsuka 2020, MNRAS

Using SLRs, we can discuss such broad topics. How useful they are!

Summary

1. The birth environment of the early Solar system 4.6 Gyr ago

2. The local interstellar environment of the current Solar system

3. The formation mechanics of the Milky-Way's spiral arms