Non-linear evolution of fast conversions in dense medium

Chinami Kato (TUS) Collaborators : Hiroki Nagakura (NAOJ)

Unraveling the History of the Universe and Matter Evolution with Underground Physics June, 14th, 2022

Neutrino oscillation in supernovae

<u>Collective oscillations</u> non-linear phenomena by v-v self-interaction

Shock

PNS

 $\nu - \nu$ scattering $\nu - e$ scattering

Collective oscillation $r \sim 10-100$ km

Vacuum oscillation

Quantum Kinetic Equations

$$\mathcal{V} \quad i\left(\frac{\partial}{\partial t} + \vec{v} \cdot \nabla\right) \rho(\vec{x}, \vec{p}, t) = \left[\mathcal{H}, \rho(\vec{x}, \vec{p}, t)\right] + i\mathcal{C}[\rho]$$
$$\overline{\mathcal{V}} \quad i\left(\frac{\partial}{\partial t} + \vec{v} \cdot \nabla\right) \bar{\rho}(\vec{x}, \vec{p}, t) = \left[\bar{\mathcal{H}}, \bar{\rho}(\vec{x}, \vec{p}, t)\right] + i\bar{\mathcal{C}}[\bar{\rho}]$$

3×3 density matrix

 $\rho = \begin{pmatrix} \rho_{ee} & \rho_{e\mu} & \rho_{e\tau} \\ \rho_{\mu e} & \rho_{\mu\mu} & \rho_{u\tau} \\ \rho_{\tau e} & \rho_{\tau\mu} & \rho_{\tau\tau} \end{pmatrix}$

distribution function of active neutrinos

Oscillation term Collision term Hamiltonians

$$\mathcal{H} = \mathcal{H}_{\mathrm{vac}} + \mathcal{H}_{\mathrm{mat}} + \mathcal{H}_{\nu\nu}$$

 $\bar{\mathcal{H}} = \mathcal{H}_{\mathrm{vac}}^* - \mathcal{H}_{\mathrm{mat}}^* - \mathcal{H}_{\nu\nu}^*$

$$\mathcal{H}_{\text{vac}} = U \frac{M^2}{2E_{\nu}} U^{\dagger}$$
$$\mathcal{H}_{\text{mat}} = \sqrt{2}G_F diag[n_l - \bar{n}_l]$$
$$\mathcal{H}_{\nu\nu} = \sqrt{2}G_F \int \frac{d^3 \vec{p'}}{(2\pi)^3} \left(1 - \vec{v} \cdot \vec{v'}\right) \left(\rho' - \bar{\rho}^{*\prime}\right)$$

Properties of collective oscillations

✓ two distinct modes: fast mode & slow mode
slow mode : self-interaction ≤ vacuum
fast mode : self-interaction << vacuum</p> $l_{\text{fast}} \sim (\hbar c)^{-2} G_{\text{F}}^{-1} n_{\nu}^{-1}$

✓ small oscillation scales & fine angular structures O(1-100)cm << O(10)km, $\cos \theta_{\nu} \sim O(10^{-3})$

crossing

ρ

Inear regime study
 search for the criterion of fast conversions
 e.g., linear stability analysis, LN crossing

$$L_{\vec{v}} = \sqrt{2}G_F \int \frac{E_{\nu}^2 dE_{\nu}}{2\pi^2} \left(\rho - \bar{\rho}\right)$$

ELN crossing in Supernovae

Fast conversions occur everywhere and every time in SN! → affect the SN dynamics? or observables?

Nagakura 2021

After triggering, how do fast conversions evolve?

Fast conversion with matter collisions

 Matter collisions affect fast conversion behaviors
 ✓ Collisions change v distribution & make a new crossing e.g., halo effects, v-nuclei coherent scattering
 Cherry2013, Capozzi2019, Morinaga2020, Zaizen2020

Collisions affect the evolution of existing FCs
 Depending on reaction rate and angular distributions,
 FCs are enhanced or suppressed

Martin2021, Shalgar2020, Sigl2021, Shalgar2022

✓ Collisional instability = a new instability mode Lucas2021, Dasgupta 2021

Energy dependence of fast conversions

 ✓ Fast conversion itself does not depend on v energy
 ➡ integrate over v energy choose representative v energy

$$\mathcal{H}_{\nu\nu} = \sqrt{2}G_F \int \frac{d^3 \vec{p'}}{(2\pi)^3} \left(1 - \vec{v} \cdot \vec{v'}\right) \left(\rho' - \bar{\rho}^{*\prime}\right)$$

✓ However...

Neutrinos have energy spectrum in SN
Reaction rates have v energy dependence
→ If we consider energy-dependent reaction rates, how are the dynamics of fast conversions changed?

Our goal & today's targets

Our ambitious goal

To investigate the effects of fast conversions on SN dynamics & observables ? neutrino spectra, heavy elements etc...

Today's targets

Effects of isotropic & isoenergetic collisions
 Effects of energy-dependent collisions

Simulation setups

$$i\frac{\partial \rho_{a}(E_{\nu},\cos\theta_{\nu},t)}{\partial t} \quad Oscillation term$$

$$= [\mathcal{H}_{\nu\nu}, \rho_{a}(E_{\nu},\cos\theta_{\nu},t)]$$

$$+ i\int_{-1}^{1} d\cos\theta_{\nu}'R(E_{\nu})\rho_{a}(E_{\nu},\cos\theta_{\nu},t)$$

$$+ i\int_{-1}^{1} d\cos\theta_{\nu}'R(E_{\nu})\rho_{a}(E_{\nu},\cos\theta_{\nu},t)$$

$$+ i\int_{-1}^{1} d\cos\theta_{\nu}'R(E_{\nu})\rho_{a}(E_{\nu},\cos\theta_{\nu},t)$$

$$+ i\int_{-1}^{1} d\cos\theta_{\nu}'R(E_{\nu})\rho_{a}(E_{\nu},\cos\theta_{\nu},t)$$

$$+ flavor \qquad space$$

$$2 \ flavor \qquad odd modeling term = \int \rho d\phi_{\nu}$$

$$\rho_{a} \equiv \int \rho d\phi_{\nu}$$

$$D \ for collisions \qquad no collisions \qquad for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

$$D \ for equation term = \int \rho d\phi_{\nu}$$

QKE-MC v transports

Almost the same as the normal MC method
 8 degrees of freedom in each particle

CK et al, ApJS, 257, 55, 2021

Evolution of sample particles

Solving geodesic equation Neutrino reactions

Calculation of $H_{\nu\nu}$

Summing up MC samples

$$\mathcal{H}_{\nu\nu} = \sqrt{2}G_F \int \frac{d^3\vec{q}}{(2\pi)^3} \left(1 - \vec{v} \cdot \vec{v}'\right) \left(\rho' - \bar{\rho}^{*'}\right)$$

Evolution of ho, $ar{
ho}$

n+1 step

Solving QKE for each sample particle 4th-order Runge-Kutta method

w/o scattering, 1D phase space

 $\checkmark n_{\nu_e} + n_{\nu_x} = \text{constant}$ $\checkmark \text{ periodic conversion}$ $\checkmark \text{ conversion occurs at crossing point}$

$$n_{\nu_e} = 1.56 \times 10^{33} \text{cm}^{-3}$$
$$\bar{n}_{\nu_e} = 1.53 \times 10^{33} \text{cm}^{-3}$$
$$n_{\nu_x} = \bar{n}_{\nu_x} = 0$$
$$\text{Im}_{n_{ex}} = -\text{Re}_{n_{xe}} = 10^{-6} n_{\nu_e}$$
$$\text{Im}_{n_{ex}} = -\text{Re}_{n_{xe}} = 10^{-6} \bar{n}_{\nu_e}$$

w scattering, 1D phase space

✓ collisions enhance conversions ✓ low rate → slower growth larger number of n_x ✓ conversions occur at wide range

 $1.25 \times 10^{-5} \text{ cm}^{-1}$

w scattering, 2D phase space \checkmark two neutrino energies $E_{low}=10$ MeV, $E_{high}=30$ MeV $\checkmark n_{low} = n_{high}$ for $v_e \& \bar{v}_e$ \checkmark Energy dependent reaction rate $R(E_v) = R_0 E_v^2$ $\langle R_{ee} \rangle = 1.25 \times 10^{-4} cm^{-1}$ $\langle R_{ee} \rangle = \frac{R(E_{low})n_{low} + R(E_{high})n_{high}}{R_{ee}}$

 ✓ Energy dependence of reaction rate reduces the impact of collisions from the single energy case

 n_{ν}

Angular distribution

 ✓ high energy neutrinos experience collisions more frequently

detailed balance is achieved between two angles
 the number of scatterings is effectively reduced

Number asymmetric case $(n_{low} \neq n_{high})$

we change the number ratio between two v energies
 In all the models, the impact of collisions is reduced
 But some models have very close results

$$\langle R_{ee} \rangle = 1.25 \times 10^{-4} cm^{-1}$$
$$\langle R_{ee} \rangle = \frac{R(E_{\text{low}})n_{\text{low}} + R(E_{\text{high}})n_{\text{high}}}{n_{\nu}}$$

	$R_0/[10^{-4} \mathrm{cm}^{-1}]$	$n_{ m low}/n_{ u}$	$n_{ m high}/n_{ m u}$	β
$E2_HR(1:1)$	1.00	1/2	1/2	1
$E2_HR_a(2:1)$	1.36	2/3	1/3	2
$E2_HR_a(10:1)$	2.89	10/11	1/11	10
$E2_HR_a(50:1)$	4.32	50/51	1/51	50
E2_HR_a(100:1)	4.63	100/101	1/101	100

Validity of monochromatic assumption

 \checkmark monochromatic assumption in two v energies $=\overline{R_{low}n_{low}} \gg \overline{R_{high}n_{high}}$ $= R_{low} n_{low} \ll R_{high} n_{high}$ ✓ monochromatic assumption in general = collisions in a specific v energy dominate others \checkmark a versatile index for measuring multi-energy effects $\chi \rightarrow 0 \Leftrightarrow$ monochromatic

$$\chi = \left| \frac{\langle E_{\nu} \rangle - \langle RE_{\nu} \rangle}{\langle E_{\nu} \rangle + \langle RE_{\nu} \rangle} \right|$$

$$\langle E_{\nu} \rangle = \frac{\int d^{3} \vec{p} E_{\nu} \rho}{\int d^{3} \vec{p} \rho}$$
$$\langle RE_{\nu} \rangle = \frac{\int d^{3} \vec{p} RE_{\nu} \rho}{\int d^{3} \vec{p} R\rho}$$

Energy dependence of fast conversions
 ✓ fast conversion itself does not depend on v energy
 ➡ energy-dependent collisions introduce dependence!

Summary & Future works

<u>Summary</u>

✓ collective oscillation will affect SN dynamics & observables
 ✓ Homogeneous fast conversions have periodic feature
 ✓ Collisions break this feature and larger number of n_x is
 produced

✓ If we introduce energy-dependence into reaction rates, the results deviate from the monochromatic results.

 \checkmark If collisions are localized in a certain energy, the monochromatic assumption is valid

Future works

✓ Emission & absorption, realistic scatterings (non-isoenergetic, non-isotropic)

Realistic neutrino energy spectrum & angular distributions
 How FCs affects SN dynamics & observables?