# Testing alternative DM models via structure formation in the universe

Uchuu simulation: Ishiyama+21

Ken NAGAMINE Osaka / K-IPMU / UNLV)

https://www.cfca.nao.ac.jp/en/pr/20210910





# Success of ACDM & "small-scale crisis" • Alternatives: WDM, SIDM, FDM, .... Probing via Structure Formation — Lya forest, High-z galaxies, Local ultra-faint dwarfs



## **Evidence of Dark Matter**

### — success of CDM on large scales (≥100 kpc)

- Stellar motions Lord Kelvin (1884); Kapteyn '22; Jeans'22; Oort '32
- Galaxy clusters ~80% of mass is dark (Zwicky '33)
- Galaxy rotation curves (Rubin & Ford '70)
- Galactic disk stability (stellar kinematics; Ostriker & Peebles '74)
- Cosmic Microwave Background (CMB) angular power spec.
- Structure formation P(k), galaxy clustering, Ly- $\alpha$  forest
- Gravitational lensing (strong & weak)
- Bullet Cluster (Markevich+'02; Clowe+'06)

. . . . . .

















## **ACDM challenged by small-scale problems?**

- Missing satellites problem too much substructure?
- Too-big-to-fail problem over-abundance of massive & dense substructures (in CDM) that could host gals after reionization
- Void phenomenon: gals in voids are too normal?
- and Andromeda

. . . .

 Cusp-Core problem — simulations predict steeper inner DM halo profile Flores & Primack '94; Moore '94

Klypin+'99; Moore+'99

Boylan-Kolchin+'11

Peebles '01

**Satellite plane problem:** satellites aligned in a plane for both MW



## **Original Substructure Problem**





Klypin+'99; Moore+'99





Graus+'19





### **No Missing Satellites Problem??**



cf. Garrison-Kimmel+'17; Jethwa+18; Kim+'18; Li+19



## No Missing Satellites Problem

### high-resolution zoom-in simulation

**CHANGA** code (Gasoline + Charm++)

> $\epsilon_g = 87 \,\mathrm{pc}$  $h_{\rm sml} = 11 \, \rm pc$  $m_{\rm dm} = 1.8e4 M_{\odot}$  $m_{\rm gas} = 3.3e3 M_{\odot}$  $m_* = 994 M_{\odot}$



Applebaum+21

cf. Garrison-Kimmel+'17; Graus+18; Kim+'18





## Dark matter ptcl candidates

**Thermal relic WIMP**  $(10 \text{GeV} \sim 1 \text{TeV})$ 

(cf. self-interacting DM)

becomes non-relativistic earlier than CDM; suppress perturbation at galactic or smaller scales

(gravitino, sterile neutrino,...)

remains relativistic until late time, and erase structures at super-galactic scales.



(Fuzzy DM; axion-like, ALP, ULA)



### **JWST** launch **Dec 2021**



0.1 billion 400 thousand The Big Bang **First Stars** Recombinatior The Dark Age Fully ionized Veutralized 1000 100



## Fuzzy Dark Matter (FDM)

### **Ultra Light Bosons, Wave-like, Axion-like**

- non-thermal scalar boson field, non-rela, low-momentum state as a cold **B.E.C.** (i.e. "BECDM")
- $m \sim 10^{-22} \text{ eV}$ ,  $\lambda_{de Broglie} \sim 1 \text{ kpc}$
- suppression of halos at  $\leq 10^7 10^{10} M_{\odot}$
- quantum pressure —> central soliton core
- on large-scales,  $\approx$  CDM

Baldeschi+83; Kim '87; Sin+94; Hu+00; Marsh+14; Schive+14,16; Hui+17; Mocz+17; Robles+18; Zhang+18; Mocz+19, ....





- Uncertainty principle counteracts gravity below Jeans scale

- quantum pressure from uncertainty principle — solitonic core

- constraints from Ly $\alpha$  P(k):  $m > 2 \times 10^{-21} \text{ eV}$  Irsic+17

(Not much room for ULA?)

2Mpc

Mocz+19

## **Solitonic Core of FDM simulation**



e.g. 
$$m_B = (8.1^{+1.6}_{-1.7}) \times 10^{-23}$$
 er  
for Fornax  
 $M_s \approx M_{gal}^{1/3}$ 

 $M_s \simeq 2 \times 10^9 M_{\odot}$  for MW core

 $m_{FDM} \gtrsim 10^{-21} \,\mathrm{eV}$  Hayashi+21



### (a) box

FDM

### (b) projection



### (c) slice

z~7 **Mocz+ '21** 

### **JWST mock observation**

### CDM





z~7

### original raw image

(no surface brightness limit)

w/ realistic surface brightness limit:  $\sim 0.0013 \,\mathrm{MJy \, sr^{-1}}$ 27.7 ABmag/arcsec<sup>2</sup> (~50 times deeper than the actual)

> filamentary stellar distr. is barely visible.



ELT / TMT obs. with AO + grav lensing











## **UV Luminosity Function as a Probe of DM & P(k)**



## Quasar (QSO) absorption line and Ly-a forest

(a beam of light from a supermassive black hole)



obs: Weymann+81; Cowie+95; Rauch+98

theory: Cen+94; Hernquist+96; Miralda-Escude+96; Croft+98; Zhang+97, 98



## Ly-a forest demonstration movie

### Quasar



### (very bright SMBH)









## **Producing light-cone data**

### **GADGET3-Osaka** cosmological simulation ( $L_{box}$ = 100 Mpc/h, N= 2 x 512<sup>3</sup>)

**Model variations:** 

1. No-feedback **2. Const. wind velocity** (Springel & Hernquist '03)

**3. Osaka feedback model** (Shimizu+'19) **4. FG09 vs. HM12 UVB**, **5. Self-shielding or not.** 

Light-cone @ z~2-3,



 $100 h^{-1}$ cMpc (height) ×  $1 h^{-1}$ cGpc ×  $10 h^{-1}$ cMpc (depth)

(but no AGN FB yet)







Various statistics can be computed from this: 1. Flux PDF, 2. 1D  $P_k(v)$ , 3. Flux contrast (1D, 2D)



## Lya forest statistics

### **Transmitted flux PDF**



~30% effect of baryonic physics difference

1D Ly-a P(k)



-0.5KN+'21

## Ly-α forest constraint via WDM/FDM simulation



**1D flux** power spec

$$\delta_{\rm F} = F/\langle F \rangle - 1$$

![](_page_24_Figure_4.jpeg)

k (s/km)

![](_page_24_Figure_6.jpeg)

cf. Irsic+17; Armengaud+17; Zhang+17

![](_page_24_Picture_8.jpeg)

# WDM conclusions

- WDM w/ m≤ 3keV have been explored viable, strong alternative to CDM
- m<sub>wdm</sub> ≥ a few keV more likely than < 1keV.
- Viel+13, Ly-a forest: m>3.3 keV (2-σ), M<sub>h,min</sub>~2e8 M<sub>☉</sub>
  Baur+16: m>2.96 eV (for thermal relic)
- Further study needed with high-res. and feedback e.g. impact of AGN feedback on small-scale power (van Daahlen+'11; Semboloni+'11)

# - Concluding remarks

- "Small-scale problem" might exist, but astrophysics can solve them.
- "Missing satellite problem" seems to be disappearing —> ``Too many satellites problem" ?
- But still interesting to consider alternatives to CDM
- $Ly\alpha$  forest & High-z gals strong constraints. (statistics)
- Better understanding of feedback is needed.
- FDM vs. WDM interesting differences on small scales.
- stellar kinematics non-spherical models w/ anisotropic  $\sigma$

 $m_{wdm} \gtrsim 3 \,\mathrm{keV}$  $m_{FDM} \gtrsim 10^{-21} \,\mathrm{eV}$ 

(e.g. Hayashi+; Goldstein+22 –  $m \ge 10^{-20} \,\mathrm{eV}$ )

![](_page_26_Picture_12.jpeg)