Direct dark matter search with the full data set of XMASS-I

K. Abe Kamioka observatory, ICRR, the University of Tokyo for the XMASS collaboration

Contents

- •XMASS-I experiment
- Full data set of XMASS
 - $\bullet\,{\sim}5$ years long stable observation
- •Analysis and results
 - Fiducial volume analysis
 - Modulation analysis
- Summary

XMASS-I experiment

- Unique experiment
 - Single phase (scintillation photon only) liquid xenon detector.
 - Large volume ~1t
 - Long stable observation period, 5 years
 - Large light yield ${\sim}14 \text{pe/keV}$ and low threshold ${\sim}0.5 \text{keVee}$
- Variety of rare events search
 - Dark matter
 - modulation, low mass, inelastic, hidden photon
 - Solar axion, 2nECEC, GW, exotic neutrino interaction
- For present dark matter search situation, wide variety results are quite important.

XMASS detector

- Kamioka Observatory (~2700m.w.e.), Japan.
- 832kg (~80cm) liquid xenon for active volume.
- ~2-inch PMT (hex and round shape) × 642 : 62% photo-coverage
- 10x10m water tank for passive shield and active shield as muon veto, 20-inch PMT \times 70.

Japan

Kamioka Mine

- $\bullet \sim \! 5$ years long stable observation
- 2013/11/20~2019/2/1
 - Normal threshold 4hit ~1keVee
 - live time 1590.9 days
 - Low threshold 3hit ~0.5keVee
 - live time 768.8 days
- Stable observation was realized
 - Steadily accumulated data
 - Low threshold data started from middle of the experiment
 - Relatively longer down time came from xenon purification work for impurity removal.
 - Trigger rate change for before selection disappeared after noise removal.

UGAP2022

Detector stability

- Pressure and temperature
 - Stable except one drop.
 - One large drop caused by change of reference sensor controlling the refrigerator.
- Optical parameter of liquid xenon
 - PE yield had larger change in former part.
 - Affected by absorption length change.
 - Correction applied in the analysis.
 - latter half was quite stable
 - Absorption length gradually increased by circulation.
 - getter to remove impurity.
 - Intrinsic relative light yield was not changed within 2% estimation error.

Detector stability, PMT

- 642 PMTs
- Single rate
 - Max ~kHz, average ~Hz
 - Max rate and total single rate change were used as run selection criteria for lowest energy bin 0.5~1 keVee.
- PMT gain
 - Monitored by LED
 - Small decrease of gain was observed
 - Correction in the analysis
- Dead PMT
 - Increase later part
 - Effect to surface BG were considered during analysis.

Analysis and results

- By using ~5 years full data set, WIMP dark matter searches were done.
- Fiducial volume analysis
 - Search signal inside fiducial volume
- Modulation analysis
 - Search "modulation" signal

Dark matter search with full data set

- Fiducial volume analysis
 - Select fiducial volume event by using reconstructed position information.
 - BG from outside can be stopped by the outside shielding region.
 - Search signal by fitting data with BG + expected signal
 - Previous report, <u>Phys. Lett. B</u> <u>789 (2019) 45-</u> <u>53, arXiv:1804.02180</u> result by 705.9days data.

Modulation analysis with Migdal effect

- Migdal effect
 - At nuclear recoil, nuclei and electrons do not move in sync.
 - Separate move causes ionization and excitation of atom.
- In M.Ibe et al., *Journal of High Energy Physics* volume 2018, Article number: 194 (2018)

arXiv:1707.07258v3 [hep-ph]

- Expected energy loss in Xe
- Though expected event rate is small, larger energy loss is expected for light dark matter.
- Another channel for search

$$\frac{d\sigma}{dE_R} \simeq \sum_{E_{ec}^F} \frac{1}{2} \frac{m_A}{\mu_N^2 v_{DM}^2} |F_A(q_A^2)|^2 \bar{\sigma}_N Z_{FI}(q_e)|^2,$$
$$Z_{FI}(q_e) = \langle \Psi_F | e^{-i\mathbf{q}_e \cdot \hat{\mathbf{x}}} | \Psi_I \rangle$$
$$q_e = \frac{m_e}{m_A} q_A$$

M.lbe et al., arXiv:1707.07258v3 [hep-ph]

11

Modulation analysis with Migdal effect

- Step of expected signal calculation
 - 1. Expected energy loss calculation
 - 1. Energy from emitted electron and de-excitation are considered separately.
 - 2. Calculate energy loss spectrum for each
 - 2. Apply detector response
 - 1. Apply MC based response to each energy loss.
 - 2. Only above 1keVee energy loss was used.
 - Limit from our detector calibration (escape X-ray from ⁵⁵Fe)
 - 4. de-excitation component was negligible.
- Two order lager expected signal than bremsstrahlung.

Modulation fitting

- α_k: Correlated systematics (light yield, etc)
- $\sigma_{\rm sys}$: Others (stability of DAQ modules, etc.)

Expected events

$$R_{exp} = \int_{t_j - \delta t_j}^{t_j + \delta t_j} dt \left[E_{bg} \cdot (C_{bg} + S_{bg} \cdot t) + \sigma \cdot E_{sig} \left\{ C_{sig} + A_{sig} \cos 2\pi \frac{t - t_0}{T} \right\} \right]$$
BG Signal

Fitting results

- Best fit result for Migdal signal
- DM mass $0.5 GeV / c^2$
- Fit with signal(with modulation)+BG(assume decrease over time)
- 1~20keVee range
- Observed data (black)
- Corrected data (green)
 - Corrected effects from PE yield change and dead PMT increase.
 - Correction factor was estimated by MC and sample data.
- linearly decrease BG + modulated signal
- No significant signal
 - Upper limit

UGAP2022

Results for Migdal and Brems

- 90% upper limit
- Sub-GeV region
 - 0.35~4GeV /c² Migdal
 - 0.32~1GeV $/c^2$ Brems
- Brems update from 2018 results, factor ~2 improve.
- Migdal, new results
 - Migdal search realize 2 orders higher result than Brems as expected.
- World lowest modulation limits.

15

Results for nuclear recoil signal

- Multi-GeV region
 - $4 \sim 20 \text{GeV} / c^2$
- Use lowest energy bin
 - 3hit low threshold data
 - 0.5~20keVee regions were searched.
- At most ~1.4 improved from 2018 XMASS results.

NR Model independent

- Simply estimate amplitude of annual modulation components.
- To look for variety of candidate
- Cycle and period is fixed
 - t0=152.5 days (Jun. 2nd), T = 1 year

Results for fiducial volume analysis

Summary

- XMASS-I experiment
 - Unique experiment.
 - Single phase, large volume liquid xenon detector.
 - 5 years long stable observation 2013/11~2019/3
 - live time 1590.9 days
 - stable DAQ and detector status
- Dark matter search with full data set
 - Modulation analysis
 - Update Nuclear recoil, Brems and model independent
 - Add Migdal effect signal search
 - 2 orders better results than Brems results
 - World best modulation limit.
 - Fiducial volume analysis
 - factor ~ 1.5 improve from 2019 result
- Preparing paper