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The neutrino fog
Directional dark matter detection

What else can we do?

Partially based on Snowmass white paper [2203.05914] and prior work



Status of searches for WIMP-like dark matter via nuclear recoils

Neutrino floor
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Status of searches for WIMP-like dark matter via nuclear recoils
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Status of searches for WIMP-like dark matter via nuclear recoils

Low threshold
detectors
e.g. Cryogenic
scintillators using
semiconductors,
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Status of searches for WIMP-like dark matter via nuclear recoils

Low threshold
detectors
e.g. Cryogenic
scintillators using
semiconductors,

Multi-ton scale liquid
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The “neutrino floor” as it’s usuallv presented
y
e.g. for LXe TPCs
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Neutrino fluxes relevant for
dark matter searches
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Neutrino fluxes relevant for
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Neutrino fluxes relevant for

10° —\\ dark matter searches
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CEvNS event rates for Xe target
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Gradient of discovery limit, n = —(dInc/dIn N)~!
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O’Hare [2109.03116]

The “neutrino fog”
colour encodes how badly
the neutrino background
inhibits DM discovery

— the parameter space is
not uniformly foggy



How to venture into the neutrino fog:

Several methods, ordered (sort of) in increasing effectiveness

1. Detect a lot ot events

2. Use annual modulation

3. Have multiple target nuclei

4. Improve neutrino flux measurements

5. Use directional detectors



How to venture into the neutrino fog:

Several methods, ordered (sort of) in increasing effectiveness

1. Detect a lot of events
2. Use annual modulation
3. Have multiple target nuclei

4. Improve neutrino flux measurements

5. Use directional detectors
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- (Galactic

The dark matter flux on Earth is anisotropic and should align with the
direction of galactic rotation — a highly characteristic signal that is robust
against theoretical and astrophysical uncertainties
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The dark matter flux on Earth is anisotropic and should align with the direction of galactic rotation
— a highly characteristic signal that is robust against theoretical and astrophysical uncertainties
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A directional detector should be able to “see through” the neutrino fog



The dark matter flux on Earth is anisotropic and should align with the direction of galactic rotation
— a highly characteristic signal that is robust against theoretical and astrophysical uncertainties
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A directional detector should be able to “see through” the neutrino fog



How to detect nuclear recoil directions at the keV-scale?

@ Initial track
@ After diffusion

' True recoil dir.

T Straggled recoil dir.




How well do nuclear recoil directions need to be measured?

Some rough benchmarks for dark matter:
(see review [2102.04596] for reasoning)

o Angular resolution <30° [f you don’t achieve these then
: : directionality adds nothing t
* Correct head/tail >75% of the time trectionality adds nothing to

the sensitivity (in the context of

* Fractional energy resolution < 20% the v background)




How well do nuclear recoil directions need to be measured?

Some rough benchmarks for dark matter:
(see review [2102.04596] for reasoning)

o Angular resolution <30° [f you don’t achieve these then
. . directionality adds nothing t
» Correct head/tail >75% of the time HECHONIATRY adies HOEIIS 19
the sensitivity (in the context of
* Fractional energy resolution < 20% the v background)
And achieved...

At the level of individual events

* In as high a density target as possible (maximise target mass)

* Below <10 keVr (target dependent but usually CEVNS recoils are sub-10-keVr)
» With a timing resolution better than a few hours



What technique to use?

Anisotropic materials Micro-pattern gas detectors

e, '_n_r
e

Nuclear emulsions

S

Crystal defects

Colummnar recombination

A lot of directional detector ideas proposed

— unfortunately many do not meet the performance goals even under the most
optimistic scenarios imaginable

— Need complete 3D time-resolved tracks with independent recoil energy
measurements. Only a subset can do this, daily modulation is not enough.



Directionality in solids
Clear advantage: high target density

Nuclear emulsions Crystal defects Anisotropic materials

Ga
[1604.04199] [2009.01028],[2203.06037] e.g. [1807.10291]
Need to image tracks after exposure, so have to No event-by-event recoil directions.
But: figure out some method of reclaiming event time Have to use daily modulation as a

information or mitigating against Earth’s rotation proxy for directionality



TPC + micro-pattern gas detector

In principle could provide high signal-to-noise detection of nuclear and

3

electronic recoils with 100 ym~-voxel size
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TPC + micro-pattern gas detector

In principle could provide high signal-to-noise detection of nuclear and

3

electronic recoils with 100 ym~-voxel size

1901.06657

Time-
projection




[2008.12587]

CYGNUS: Feasibility of a nuclear recoil observatory with directional sensitivity to dark

S.
J.

matter and neutrinos

E. Vahsen,! C. A. J. O’'Hare,”? W. A. Lynch,® N. J. C. Spooner,® E. Baracchini,* > ¢ P. Barbeau,”’
B. R. Battat,® B. Crow,! C. Deaconu,’ C. Eldridge,®> A. C. Ezeribe,®> M. Ghrear,! D. Loomba,'°
K.

J. Mack,!! K. Miuchi,'? F. M. Mouton,? N. S. Phan,'3 K. Scholberg,” and T. N. Thorpe!:°

He, SFe, CFsat up
to atm. pressure
look most
promising for
reaching
performance goals
and competitive
DM sensitivity

CYGNUS-Nm?3 CYGNUS-10 m?3 module

B Neutron+gamma shielding
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HD TPC performance studies

Final goal for high-definition imaging of recoils in 3D, meeting low-energy
performance goals may not be so far away...

i] E=40keV_ p=87%
1] E=29keV_ p=68%
> [ii] E=19keV_ p=60%
[iv] E=42keV_ p=79%

[v] E=55keV_ p=73%
[vi] E=95keV_ p=>99%
[vii] E=85keV__ p=96%

—+— G ~ 13,000 (Etruth)
.- G~13 000 (Ereco)

—— G ~ 900 (Eutn) |
b G ~ 900 (Ereco) J

lllll

13579 13 17 21 25 29 33 37 41 45 49

Etruth [ kevr ] ’

Ereco [K€Vee]

CNN reconstruction of neutron-induced He recoils in BEAST TPC
J. Schueler, S. Vahsen (U. Hawaii)




Vahsen, CAJO+ [2008.12587]

Cygnus: projected sensitivity

Target gas, volume, and threshold are still under investigation, but there is
scope for world-leading limits even with a 10 m3 scale experiment (~2025-2030)
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Directionality in MPGDs, beyond nuclear recoils

MPGDs can measure the directions of both electron recoils and nuclear recoils.
The directionality and track shapes also help distinguish between them
— [s there other physics we can do?
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Vahsen, CAJO, Loomba [2008.12587]



CEvUNS physics case

— recoil imaging detector in conjunction with neutrino beam could be used to measure CEVNS.
— Increased background rejection against non-neutrino sources, as well as for searches for BSM interactions

Readout 550:|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||:

500 F =

40 Torr CS, = [ ----- Total Sulfur ----- ~ Carbon} =

+ 1 Torr O, 4505 E

o 4006 Carbon disulfide =

| S 3508 T T T T — =

S recoil = = Re e _3

” 300F S T E

— > -+ Q — / _=

0 250E AP L by =

v beam CICJ = Lo e e =

> 200E /l __________ =

150 » T —

— =" —

/ 100E/ =

—y .- =

505 . :

Readout O@‘I'I'I’IIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII:
Central cathode 0 200 400 600 800 1000 1200

Field cage
Pressure [Torr]

Being pursued by vBDX-DRIFT collaboration [2103.10857] and under discussion
within CYGNUS collaboration



Electron and nuclear recoils

Solar neutrinos can scatter off electrons and nuclei — detectors have both!
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Solar neutrinos

Recoil energy-angle spectrum: (£,, cos 0;)
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Given known direction to the Sun, directional
information allows one to reconstruct the
neutrino energy spectrum event-by-event
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General physics: Measurement of the Migdal effect
—> Emission of ~keV electron for very low energy NRs. Important for sub-GeV DM

searches, but on shaky ground theoretically as it has never been measured

Electron

recoil

Migdal |
electron = /

Light DM

\*

Nuclear recoil

Could be confirmed directionally, using a small-scale optical TPC -
MIGDAL collaboration exploring this in the UK



Summary

e The neutrino fog looms.

e Directionality is a smoking gun signature that could be used to most efficiently probe
further into the neutrino fog, if it can be realised at scale.

* Cygnus is making steady progress towards a competitive network of modular gas time
projection chambers. Important experimental milestones coming in the next few years.

*3d, time-resolved tracks with head-tail should be the ultimate goal. Any limitations in
directionality incur a limitation in the distance you can go through the fog.

e Cygnus could potentially one day serve a dual purpose as a DM and neutrino detector,
with the ability to distinguish the two signals

e Many other exciting applications of recoil imaging spanning dark matter, neutrinos and

BSM physics
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Further reading (of my own papers...)

[2203.05914] - Snowmass white paper on recoil imaging
[2102.04596] - a review of directional detection
[2002.07499] - directional detection in Xe/ Ar
[2008.12587] - directional detection with gas TPCs
[2105.11949] - directional detection with DNA
[2109.03116] - the neutrino fog
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Abstract

Searches for dark matter-induced recoils have made impressive ad-
vances in the last few years. Yet the field is confronted by several
outstanding problems. First, the inevitable background of solar neutri-
nos will soon inhibit the conclusive identification of many dark matter
models. Second, and more fundamentally, current experiments have
no practical way of confirming a detected signal’s galactic origin. The
concept of directional detection addresses both of these issues while
offering opportunities to study novel dark matter and neutrino-related
physics. The concept remains experimentally challenging, but gas time
projection chambers are an increasingly attractive option, and when
properly configured, would allow directional measurements of both
nuclear and electron recoils. In this review, we reassess the required
detector performance and survey relevant technologies. Fortuitously,
the highly-segmented detectors required to achieve good directionality
also enable several fundamental and applied physics measurements.
We comment on near-term challenges and how the field could be ad-
vanced.

Physics case for a directional gas TPC
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Timeline for short and long-term developments

towards recoil imaging in MPGDs
2020 2025 2030 2035 2040)

Dark E
matter :
Neutrinos E 1 m3 TPC at 10 m3 TPC at LBNF E
= NuMI '

E €.§. measure Probe some bsm physics to E

X Weinberg angle XYZ precision :
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BSM :
physics |
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Target gas mixture: 755:5 He+SF¢ at 1 atm.

Why SF¢?
M Negative ion drift mixture: drift ions rather than electrons, results in lower
diffusion and better track preservation
M Minority charge carriers which can be used to fiducialise the gas volume in the
drift direction (z)
1 9F has very high (S,) so sets powerful spin dependent WIMP limits (this is why

PICO’s SD-p limits are so good)

Why He?
M Light WIMPs still give large recoil energies with He: improves the low mass
sensitivity
M High quenching factor in gas mixture (>70% above 10 keVr)
M Doesn’t significantly impact Fluorine tracks, can be used simultaneously



Quenching factors for recoils in 1 atm of He+SFs
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(Gas mixture SF¢ He:SF¢ He:SFg

Pressure |Torr] 20  740:20 755:5
Density [kg/m®] 0.16 0.32  0.20
W [eV /ion pair] 35.5 38.0 40.0

Trans. diffusion [pm/4/cm| 116.2 78.6  78.6
Long. diffusion [pm/4/cm] 116.2 78.6  78.6
Drift velocity |mm/ps] 0.140 0.140 0.140
Mean avalanche gain 9 x 10° 9 x 10° 9 x 10°

TABLE I. Various gas-dependent parameters assumed in the
TPC detector simulation. The values are sourced as follows:
the W factor for pure SFg¢ is from a measurement with alpha
particles [310], while the W factors for the He:SFg and He:CF 4
mixtures are calculated using Eq.(1) of Ref. [266]. The dif-
fusion values and drift velocity in 20 Torr of pure SFg were
measured in Ref. [299]. For the He:SF¢ mixtures, no mea-
surements or reliable simulations exist, so we use the 40 Torr
pure SFg diffusion from Ref. [299] and then assume the electric
field can be adjusted to keep the drift velocity constant. The
avalanche gain assumed for pure SF¢ has been achieved with
THGEMs in Ref. |311] and triple thin GEMs in Ref. [312],

and is also used for He:SF¢ mixtures.



Readout type |Dimensionality Segmentation (z X y) Capacitance [pF'|  Onoise in 1 us  Threshold /onoise
planar 1d (z) 10 cm x 10 cm 3000 18000 e~ 3.09
wire 2d (yz) 1 m wires, 2 mm pitch 0.25 800 e~ 4.11
pad 3d (zyz) 3 mm X 3 mm 0.25 375 e~ 4.77
optical 2d (zyz) 200 pym x 200 um n/a 2 photons 5.77
strip 3d (zyz) 1 m strips, 200 um pitch 500 2800 e~ 4.61
pixel 3d (zyz) 200 um x 200 um 0.012 - 0.200 42 e~ 5.77

TABLE II. List of readout-specific parameters that are used in the simulation of each technology we consider here. The
capacitance, which determines the noise level, is listed as that for a single detector element. For the optical readout, a yield
of 7.2 x 10~° photons per avalanche electron is used to account for the combined effects of photon yield, geometric optical
acceptance, optical transparency, and quantum efficiency.



Stawell Underground Physics Laboratory (SUPL)

+ 1.6 km depth, still operational gold mine

+  First underground site in Southern
Hemisphere

+  Will host one half of SABRE experiment

+ Cygnus involvement as part of recently
formed Centre of Excellence for Dark
Matter Particle Physics

Size of DRIFT-II (currently at Boulby)

Size of would-be
CycNUs-10 m3 module




Readout technologies

Most highly segmented readouts

Simplest readouts A T
— Best directional sensitivity but

— Worst directional sensitivity but

lower cost Highest cost

Need a balance between cost and directional performance



Example: angular resolution

Dispersion in measured (axial) angles relative to initial recoil direction (=1 rad. if there is no
correlation and angles are isotropically distributed)
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Simulated charge readout comparison
o To realistically discriminate DM and

% e € neutrinos, need angular resolution
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u-PIC (strip) readout currently looks
the best in terms of cost vs. directional
sensitivity

A closer look at dependence on
threshold:
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— 8 keVr definitely feasible with
simplest electron rejection strategy
— 3 keVr is probably feasible with
optimisation of gas, bespoke track
fitting algorithms

— (.25 keVr is theoretical minimum
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SenSitiVity (SI) | CYGNUS X 6 yrs

CRIESST

|
I CDMSIlite

|

— Window worst/best case threshold
— Search mode: 1 atm. of SFg but no

directionality (possible way to extend
high mass sensitivity)

n
[\
\\

Important note: these limits are true
discovery limits, i.e. a signal can be
confirmed as DM, so comparison of
Cygnus limits with other
experiments undersells its potential 7 10™

SI WIMP-proton cross section [cm?

-——~ Single electron threshold: 0.25 keV, [755:5 Torr He:SFg]
—— Worst-case threshold: 8 keV, |755:5 Torr He:SF¢]
Search mode: 8 keV, [1520 Torr SF]
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3D tracking in high density targets?

Nuclear emulsions-based
directional detector being pursued

by NEWSdm collaboration

11604.04199]

Silver Bromide crystal
in gelatin film




Another idea for a high-density directionality:
Solid-State Quantum Sensing

Marshall+ [2009.01028]
Ebadi+ [2203.06037]

Nitrogen vacancy centres
in diamond. Can
spectroscopically
interrogate crystal
damage to detect tracks.

— need slightly elaborate
system to reclaim timing
information




A different way of seeing directionality: Daily modulation
From the detector’s perspective, the galactic dipole signature translates
to a sidereal daily modulation in angle — this is also a smoking gun

Vahsen, CAJO, Loomba [2102.04596]



Indirect directionality: anisotropic materials

Use some material with an anisotropic response to a DM signal (e.g. via phonons/light )
— Detect directionality via daily modulation without needing to reconstruct a track in 3D.
Could be an approach for very low mass DM-electron scattering

e.g. “Polar materials” Griffin+ [1807.10291]

Ga

GaAs Sapir
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— Need to use daily modulation



Liquids: columnar recombination

Nygren 2013 J. Phys.: Conf. Ser. 460 012006

— Directional effect where
charge/light yield depends
on angle of recoil w.r.t.
electric field. Possible hint
in LAr, but unobservable in
LXe

Small drift angles Large drift angles
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Liquids: columnar recombination

@) POSSible hint in L AI‘ Measurement of scintillation and ionization yield and scintillation pulse shape from

nuclear recoils in liquid argon
H. Cao,! T. Alexander,>3 A. Aprahamian,4 R. Avetisyan,4 H. O. Back,! A. G. Cocco,’ E. De]ongh,3
G. Fiorillo,” C. Galbiati,! L. Grandi,® Y. Guardincerri,® C. Kendziora,® W. H. Lippincott,3 C. Love,” 1 40 6 4 82 5
S. Lyons,4 L. Manenti,? C. ]. Martoff,” Y. Meng,9 D. Montanari,® P. Mosteiro,! D. Olvitt,” ¢
S. Pordes,® H. Qian,! B. Rossi,>! R. Saldanha,® S. Sangiorgio,'’ K. Siegl,* S. Y. Strauss,?

® AlmOSt Certalnly W. Tan,* ]. Tatarowicz,” S. Walker,” H. Wang,” A. W. Watson,” S. Westerdale,! and J. Yoo?

(The SCENE Collaboration)
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SI discovery limit at 100 GeV [cm?]
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Number of atmospheric neutrino events
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O’Hare [2002.07499]

No effect =—» —— Nondirectional
Realistic =—» =——— Stationary, A = 0.5
Optimistic = —— Stationary, A =1
Very optimistic —>» Cygnus Tracking, A=1
Impossible —>» Head-Tail, A =1

Columnar recombination
doesn’t help much, even in
wildly over-optimistic scenario
— directionality in liquids
seems unfeasible for now



The dream: Empirical flux reconstruction

1014_||.| | | I N B T T T T 11T ]
Time: 6 years v Flux
He:SF; at 755:5 Torr 10 m” (7 events) . 3
— ol Em=5keV 100 m® (77 events) O(10) m3 accesses only pp
| Bl 1000 m3 (774 events)
% * O(100) m3 accesses pp, "Be, CNO
T * O(1000) m3 access all fluxes except hep
7p
~ _
|8 l
O
‘;‘ Potentially less in fact. This assumes 755:5
= Torr He:SF6 which is good for ~10 keV NRs
&2 but >100 keV ERs may be more tolerant of
higher pressures
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...Angular performance

Everything gets worse at lower energies: = 251

Decreasing quenching factor, means recoils are 2407
harder to detect
Tracks get shorter — harder to measure directions

Contrast in dE/dx is lower, harder to measure
head-tail

All this makes it harder to distinguish ER/NRs, so
worse background rejection

N 2507

[o)

— Energy dependence of directional

2497

performance is very important, and
needs to be the focus of all
directional detection proposals




Impact of energy/angular resolution on measuring solar neutrino energies

e Perfect reconstruction (for reference purposes)
e “Good” resolution, 6/E ~ 5%, 0y ~ 15° and ey ~ 0.9 — close to best possible

e “Medium” resolution, 6/E ~ 10 %, 0y ~ 30° and ey ~ 0.75  — optimistic

Perfect reconstruction Good res. Medium res.

(~best possible from gas sim. 1 atm of
CF4, quantifying the effects of
multiple scattering, diffusion, and

T
-)
-)

readout resolution)

N Q9
- -]
- -]

Energy [keV]

T —0.5 0.0
Anti-Sun



Another key issue — background rate

* A directional experiment can tolerate higher
background, however Solar neutrino sensitivity
(e.g. accuracy of pp flux reconstruction) crucially
dependent on size of electron background (which
is typically large)

* Using pp ER rate as a reference point, competitive
sensitivity achievable even with background
~10-100 times higher than # neutrinos

* Electron backgrounds at ~100 keV energies not
well studied in gas TPCs as they are irrelevant
for DM, however CYGNO study suggests this is
still a little too high

100
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fop = £ %)
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2AINL =1

Nondirectional

Low performance
0 Mid performance
B High performance

1000 m3 X 5 years
He:SF¢ at 740:20 Torr
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Solar neutrino spectroscopy

* Assuming optimistic configuration:
CYGNUS-1000 with a good directional
sensitivity on ~100 keV ERs, and
isotropic backgrounds at a similar level
to the neutrino rate

— Potentially complementary to
experiments like Borexino due to the fact
that directionality enables reconstruction
of fluxes that are degenerate with each
other in recoil energy (e.g. CNO vs pep flux)
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| |
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Background rate = Ry,




Solar neutrino spectroscopy

Electron recoils
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NB: not intending on beating Borexino! These
measurements will be complementary, and
(hopefully) in addition to DM detection
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More experiments I didn’t have time to mention

CYGNO (various TPC projects) MIMAC (TPC)

o
n
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ReD/DarkSide
(columnar recombination in LArY)
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More concepts for light DM directionality

e Graphene, Hochberg+ [1606.08849]
e Superfluid helium, Caputo+ [2012.01432]
e Anisotropic scintillators (ADAMO project)

stacked volume




Time-integrated directional detection c A s\\}%@p T. Asada

tracks after exposure Ny R e

— rotation of Earth will wash out anisotropy
unless some Cygnus-tracking is implemented

Experiments like NEWSdm need to develop \ S\ i
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Neutrino events < DM events

O’Hare et al. 1708.02959



Neutrino “floors” beyond SI

— Not all possible DM-nucleon interactions suffer same saturation by CEvNS background

10-6;

Newstead et al.
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Neutrino “floors” beyond SI
— Not all possible DM-nucleon interactions suffer same saturation by CEvNS background
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Based on standard assumptions, what should the signal look like?
— a Gaussian peaking towards Cygnus

dR(t) | eXp( (Venin ~+ Vtan () 0089)2)

dcost |y > (Qﬂgg)lﬂ 202

- (Galactic
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Standard prediction based on a few assumptions

e The DM scatters elastically : s

2mNm>
|—>Er: X 21)200826’
(MmN + my)

* The DM velocity distribution is a Gaussian (SHM)

L+ f0) e (-2

2@02

* DM-nucleus matrix element does not depend on velocity

dR

10 ~ /5 (v cos @ — Vmin) f(v)d3v



Should the DM velocity distribution be a Gaussian?
— Evidence of significant merger in the MW’s history

The Gaia Sausage

See e.g. Helmi et al. 1806.06038, O’Hare et al., 1810.11468, Necib et al. 1810.12301
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Evidence from the H3 Survey that the Stellar Halo is Entirely Comprised of Substructure

2006.08625

ROHAN P. Naibu,! CHARLIE CONROY,' ANA BoNAcA,! BENJAMIN D. JOHNSON,' YUAN-SEN TING (T JEFx),>3 %5
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[Fe/H]<-1.5

400 I I | I I I I

300 |- -~ -

Circular velocity (km/s)

— 400 | | | | | | |
—400 =300 =200 —100 0 100 200 300 400

Radial velocity (km/s)

“Metal-poor” halo

* Round velocity ellipsoid
e ~30% of main sequence halo sample
* More metal-poor on average
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“Metal-rich” halo

e Highly eccentric radial orbits
e Dominant contribution ~50%
e Characteristic metallicity [Fe/H] =-1.4



Flux of DM from the Gaia Sausage versus the rest of the halo

Galactic

plane




The Gaia Sausage gives rise to peaks off center from Cygnus

O’Hare+ [1909.04684]

Hh— 10 ke\/

Distribution for 5-10 keVr Fluorine recoils with a 100 GeV WIMP
Halo model = SHM + Sausage




dR/dcosb

0.040

0.035

0.030

0.025

O
o
N
o

0.015

0.010

0.005

0.000

|

|

20

40

60

80 100 120 140 160 180
6 (degrees)

Non-relativistic EFT of

DM-nucleus interaction

Allows for operators (e.g. Os, O7)
dependent on transverse velocity:

Kavanagh [1505.07406]

— Non-Gaussian angular distributions



DNA detector?

New Dark Matter Detectors using DNA or RNA for Nanometer
Tracking

Andrzej Drukier,':* Katherine Freese,>3 T Alejandro Lopez,? * David
Spergel,%:3 Charles Cantor,® ¥ George Church,% ** and Takeshi Sano”: 11

I BioTraces Inc., 5660 Oak Tanager Ct., Burke, Va. 22015
? Michigan Center for Theoretical Physics, Department of Physics,
University of Michigan, Ann Arbor, MI 48109
5 Physics Department, Caltech, Pasadena, CA 91101

1206.6809



DNA-based particle detector?

Step 1: acquire some double or single-stranded nucleic
acids, each with a known sequences of bases
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DNA-based particle detector?

Step 1: acquire some double or single-stranded nucleic
acids, each with a known sequences of bases

Step 2: Attach them in a regular pattern to a thin
substrate made of a high density material

Step 3: Attach a paramagnetic bead to each strand
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DNA-based particle detector?

Step 1: acquire some double or single-stranded nucleic
acids, each with a known sequences of bases

Step 2: Attach them in a regular pattern to a thin
substrate made of a high density material
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Step 4: Particles come in and break a sequence of bases

Incoming
particle
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DNA-based particle detector?

Step 1: acquire some double or single-stranded nucleic
acids, each with a known sequences of bases

Step 2: Attach them in a regular pattern to a thin
substrate made of a high density material

Step 3: Attach a paramagnetic bead to each strand
Step 4: Particles come in and break a sequence of bases
Step 5: Broken strand segments fall down

Step 6: System of microfluidics transports the strand

segments to a PCR machine which amplifies them and
the original (x,y,z) positions are reconstructed

Incoming

particle

Microfluidics

~ ~.
Recoil

>>
PCR machine



DNA-based particle detector?

Incoming
particle

How crazy 1is it?

Putting aside the obvious
experimental challenge, there is a
clear advantage in the context of
directional detection

— No diffusion and no nanoscale

~
e
®

interrogation required

i 1 1 | »
Microfluidics PCR machine

Recoil



Idea: Lets make a crude
model of the detector

which roughly captures / t
the geometry and
material content and use

Geant4 to simulate
particle tracks

Sugar phosphate
0z = 0.34 nm
ro = 1.185 nm
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Beam angle: 0;, = 0° (side-on)
10° 10! 10? 10°
TTTT] TTTT] TTTT]

Amee) R’ . Main conclusions from the ;ym3 unit simulation

= Track directions well-preserved. Around

25" angular res. for initial recoil direction

e Particle ID and energy reconstruction not
really possible, need to look at tracks over
many units and measure dE/dx

e Need to find a good purpose tor
the idea...

Beameney [keV]I N [210511949]
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DNA origami

O D Ete Ctor ConStruCtion —> Swarup Dey, Chunhai Fan &, Kurt V. Gothelf &, Jiang Li &, Chenxiang Lin &, Longfei Liu, Na Liu &,

Minke A. D. Nijenhuis, Barbara Sacca &, Friedrich C. Simmel &, Hao Yan & & Pengfei Zhan

DNA—OrigamiStS Can make praCtically Nature Reviews Methods Primers 1, Article number: 13 (2021) | Cite this article

11k Accesses | 7 Citations | 25 Altmetric | Metrics
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Experimental side , ,
A Pocket-Sized Convective PCR Thermocycler**

. Nitin Agrawal, Yassin A. Hassan, and Victor M. Ugaz*
 Detector construction —

J

DNA-origamists can make practically

= Resistively
¢ heated block

lg

Thermal
: interconnections

anything

Anneaing Denaturing
60 °C 95°C

e PCR machines — cheap, commercially

available, portable, and fast. '

https:/ /pubmed.ncbi.nlm.nih.gov /17465434 /
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Experimental side

* Detector construction —
DNA-origamists can make practically
anything

e PCR machines — cheap, commercially
available, portable, and fast.

e DNA-substrate attachment —
standard protocols (looking at this in
the lab right now!)

Parallel Arrays of Geometric Nanowells for Assembling Curtains of
DNA with Controlled Lateral Dispersion

Mari-Liis Visnapuu,:’“§ Teresa Fazio,”® Shalom Wind,” and Eric C. Greene**

Department of Applied Physics and Applied Mathematics, Center for Electron Transport in Molecular
Nanostructures, NanoMedicine Center for Mechanical Biology, Columbia University 1020 Schapiro
CEPSR, 530 West 120th Street, New York, New York 10027, and Department of Biochemistry and
Molecular Biophysics, Columbia University, 650 West 168th Street, Black Building Room 536,
New York, New York 10032

Received June 6, 2008. Revised Manuscript Received August 18, 2008
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Experimental side

* Detector construction —
DNA-origamists can make practically
anything
e PCR machines — cheap, commercially
available, portable, and fast.

e DNA-substrate attachment —
standard protocols (looking at this in

the lab right now!)
* Main challenge — stability of detector

and ensuring strands are collected,
maybe a total rethink of design is in
order (DN A-based harddrive?)

DNA punch cards for storing data on native
DNA sequences via enzymatic nicking

S. Kasra Tabatabaei'!, Boya Wang?®8, Nagendra Bala Murali Athreya>8, Behnam Enghiad?,
Alvaro Gonzalo Hernandez>, Christopher J. Fields® ©, Jean-Pierre Leburton3, David Soloveichik?,

Huimin Zhao® "47™ & Olgica Milenkovic3™

_|_

Single-molecule imaging of DNA curtains reveals
mechanisms of KOPS sequence targeting by
the DNA translocase FtsK

Ja Yil Lee*", llya J. Finkelstein®', Estelle Crozat™?, David J. Sherratt®, and Eric C. Greene®<>

ent of Biochemistry and Molecular Biophysics and “‘Howard Hughes Medical Institute, Columbia Univers
i University of Oxford, Oxford OX1 3QU, United Kingdom

ity, New York, NY 10032; and °Department



Attachment of

paramagnetic beads
to the DNA strands

magnetic bead

o v/ biotin labeled
DNA

[t]

FIG. 3. Diagram from [16] illustrating the DNA to paramagnetic
bead attachment and manipulation via an external magnetic field.
The connection occurs due to the extreme affinity of Streptavidin
(a type of protein) to biotin molecules (vitamin H). Streptavidin is
known to form one of the strongest bonds known in nature with bi-
otin.

https: / /iopscience.iop.org/article/10.1088 /1478-3975/12 /4 /046011
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The neutrino “floor”
Defined in Billard et al. [1307.5458] and popularised by Snowmass "13 Cosmic Frontier report [1401.6085]
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To ensure we are well into the systematics limited regime,
exposures were increased to obtain 500 neutrino events.
This line thus represents a hard lower discovery limit
for dark matter experiments. Interestingly, we can de-
note three distinct features in the discovery limits coming
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This should not be surprising, HEP experiments deal with backgrounds
orders of magnitude larger than their signals all the time. We are in an
era where DM experiments are no longer “background free”.



This should not be surprising, HEP experiments deal with backgrounds
orders of magnitude larger than their signals all the time. We are in an
era where DM experiments are no longer “background free”.

— Instead of a “floor” beyond which experiments cannot reach, there is a
“fog” that makes identifying a DM signal more challenging and demands
that we understand our background better.
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The neutrino fog

There is no “floor”, but we can give
the fog a boundary by looking at
where the scaling departs from the
Poissonian expectation

Define:
n=—(dlno/dInN)™*

So n = 2 for Poissonian
background subtraction and
n > 2 for worse than
Poissonian



If we want to..

1. Continue the search for DM into the neutrino fog
Reasons to want that: Athron+ [1705.07935], Beskidt+ [1703.01255],

Roskowski+ [1411.5214],

Baker+ [1912.

Hisano+[1104.0228], Arcadi+|1711.02110],
02830], Arina+[1912.04008] ...

2. Be able to study both DM and neutrino signals in experiments
Reasons to want that: Harnik+ [1202.6073], Pospelov+ [1103.3261], Franco+[1510.04196],

Schumann+[1506.08309], Strigari [
Cerdefio+[1604.01025], Dutta+|[190:

1604.00729], Dent+[1612.06350], Chen+[1610.04177],
.08876], Lang+[1606.09243], Bertuzzo+[1701.07443],

Dutta+[1705.00661], Aristizabal Sierra+[1712.09667] ...



If we want to..

1. Continue the search for DM into the neutrino fog

Reasons to want that: Athron+ [1705.07935], Beskidt+ [1703.01255],
Roskowski+ [1411.5214] , Hisano+[1104.0228], Arcadi+[1711.02110],
Baker+ [1912.02830], Arina+[1912.04008] ...

2. Be able to study both DM and neutrino signals in experiments

Reasons to want that: Harnik+ [1202.6073], Pospelov+ [1103.3261], Franco+[1510.04196],
Schumann+[1506.08309], Strigari [1604.00729], Dent+[1612.06350], Chen+[1610.04177],
Cerdeno+[1604.01025], Dutta+[1901.08876], Lang+[1606.09243], Bertuzzo+[1701.07443],

Dutta+[1705.00661], Aristizabal Sierra+[1712.09667] ...

Then, we need strategies for dealing with the fog
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