P02 Development of a method to measure trace level of uranium and thorium in scintillation films

K. Chiba¹*, K. Ichimura¹, Y. Kishimoto¹, A. Sakaguchi², Y. Takaku²* 1: RCNS, Tohoku University, 2: CRiES, University of Tsukuba

1. KamLAND2-Zen experiment

in Xe-loaded LS (Xe-LS)

Detector upgrade : $\times \sim 5$ increase effective light yield (×1.8 light correction w/ Winstone cones) (×1.4 High light yield LS based on LAB) (×1.9 High QE 20-inch PMTs) state-of-the-art electronics : MoGURA2 \Rightarrow <u>Scintillation inner-balloon film (this poster)</u> → Film ²¹⁴Bi BG rejection Xe-LS

2. Motivation

- Material screening for detector components (organic materials) with high sensitivity
- KamLAND2-Zen's requirements
- Scintillation film (PEN film)
- \Rightarrow <u>0 (1) ppt</u>* for ²³⁸U and ²³²Th
- Bis-MSB (Wavelength shifter) :
- →<u>30 ppt</u> for ²³⁸U, <u>100 ppt</u> for ²³²Th

4-1 Result (Procedure blank)

Check the detection limit of the procedure (MDL) due to contamination from washing, ashing, and dissolution process

 washing ashing process making solution

ICP-MS

- MDL in this poster is set as : Average $+ 3 \times$ Std. Dev.
- <u>Confirm a few ppt level sensitivity</u>

(Current case : $1 \text{ pg/g}_{solution} \sim 2.5 \text{ pg/g}_{sample}$)

Blank#	238 U	232 Th	
1	0.19	1.00	
2	0.06	0.49	
3	0.14	0.43	
4	0.12	0.34	
5	0.23	0.30	
6	0.26	0.29	
7	0.15	0.29	
8	0.60	0.55	
9	0.12	0.24	
Average	0.21	0.44	
Std. Dev.	0.16	0.23	
MDL	0.69	1.13	

4-3 Result (PEN film measurement)

This result meets KamLAND2-Zen's requirement

:~100%

4-2 Result (Addition recovery experiment)

spiked

diluted

- Check how much ²³⁸U and ²³²Th could be collected from sample using this method
- spiked a known amount of ²³⁸U and ²³²Th to the sample

ashing, dissolution, ICP-MS

 $= 94.3 \pm 3.8\%$ (²³²Th)

This method can collect trace amount of ²³⁸U and ²³²Th without loss

*: presenter

International workshop UGAP2024, 4-6 March, Tohoku Univ. Sendai, Japan This work is supported by JSPS Kakenhi 21H0115, ERAN F-22-16 and ERAN P-23-09

5 Summary and future improvement

- \checkmark Detection limit of method : a few ppt level both ²³⁸U and ²³²Th
- \checkmark Almost 100% recovery rate (collection efficiency)

Demonstrate U, Th measurement in PEN film (organic material)

Submitted to PTEP

- Toward sub-ppt level measurement :
 - improving environment for pretreatment

(more HEPA filter, radio-pure synthetic quartz, clean fume hood etc.) In parallel, check PEN characteristic

(QE, Light yield, transparency etc.)