

Search for supernova relic neutrinos using neural network in KamLAND

Minori Eizuka for KamLAND collaboration (Email:minori@awa.tohoku.ac.jp), Research Center for Neutrino Science, Tohoku University

1. Introduction

Supernova relic neutrino (SRN) is the integration of past supernova neutrinos.

Motivation

Supernova rate

→ Star formation history

Previous results

There were no observation of SRN signals.

Neutrino spectrum from each supernovae

 ϕ : SRN flux *z*: Red shift

 E_{ν} : Neutrino energy

2. Kamioka Liquid-scintillator Anti-Neutrino Detector

Data taking from 2002 Mar.

1000 m underground of the Kamioka mine $\rightarrow \times 10^{-5} \mu$ flux

Outer detector

Water-Cherenkov detector for muon veto

- ► 3.4 kt pure water
- ▶ 140 20-inch PMTs

Inner detector

Liquid scintillator for physics event detection

- ▶ 1 kt liquid scintillator in large balloon
- Xe-loaded liquid scintillator in mini balloon

×2–10 sensitivity must be achieved to reach SRN models ► 1325 17-inch PMTs & 554 20-inch PMTs

KamLAND detects $\bar{\nu}_e$ via the inverse beta decay (IBD) using delayed coincidence method.

Sensitivity for MeV-energy neutrinos

3. Atmospheric neutrino background

4. Neural network training strategy

5. Event discrimination using a neural network: KamNet

KamNet is a spatiotemporal neural network developed by KamLAND group.

- Spherical neural network to conserve detector's symmetry
- Convolutional long short-term memory to incorporate time correlation
- Dropout to avoid over training

Training and performance check have been done with tuned simulation events.

Different score distribution

 \rightarrow Event discrimination is successful.

Saturation in rejection efficiency

 \rightarrow Training of KamNet is sufficient.

UGAP 2024 , Tohoku University (Mar. 4–6, 2024) 🔷