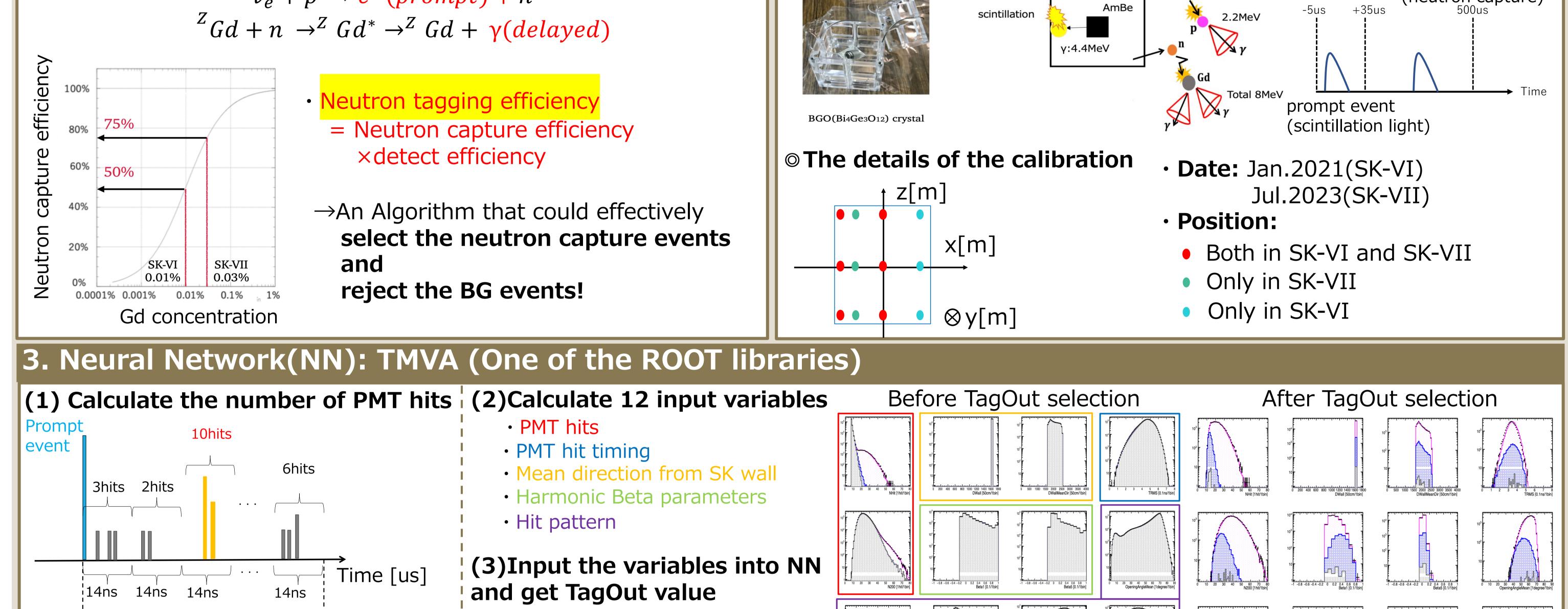
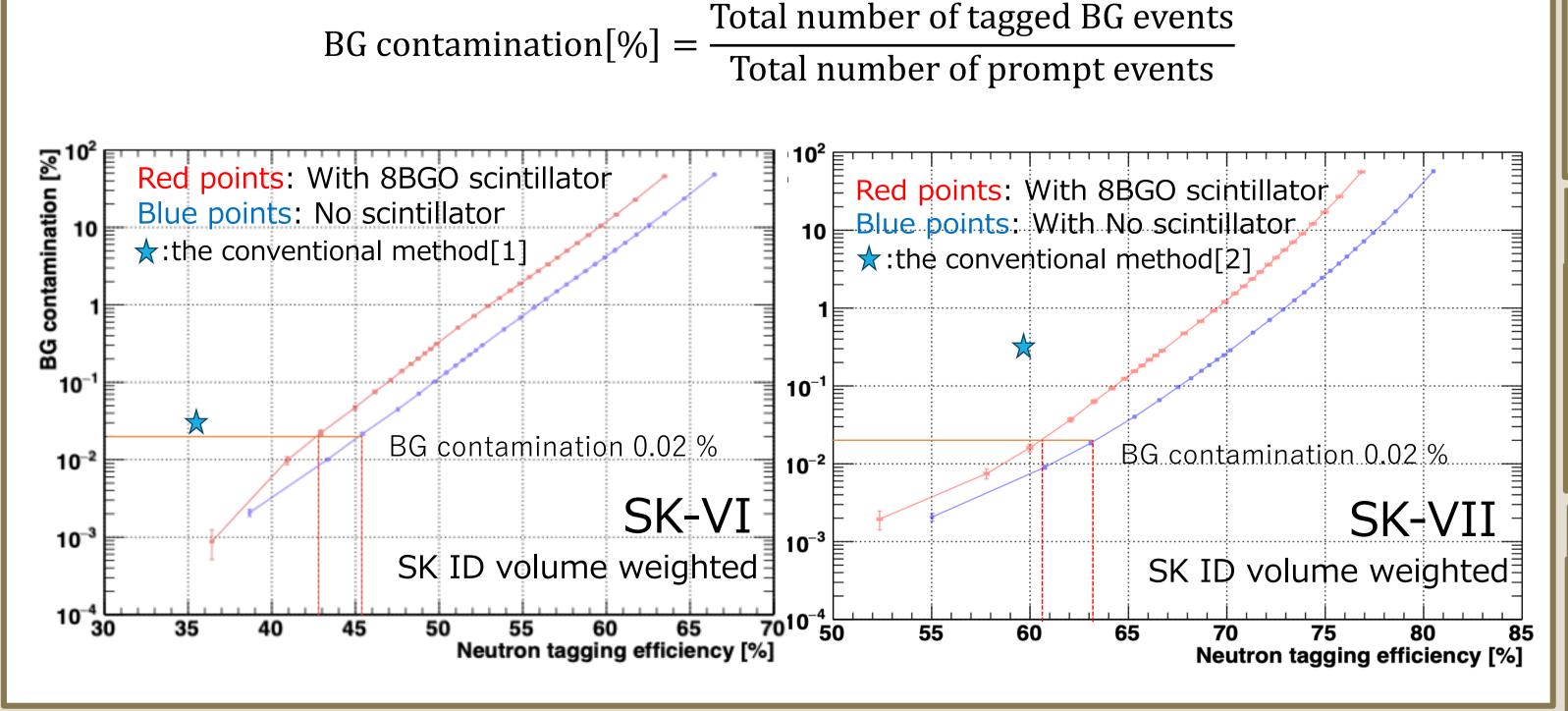


Evaluation of neutron capture efficiency with Neural Network in SK-Gd Y.Kanemura ICRR Univ. Tokyo


Abstract

SK-Gd experiment had been started since July 2020, and the gadolinium(Gd) concentration was increased from 0.01%(called SK-VI) to 0.03%(called SK-VII) on July 2022. We could achieve increasing sensitivity of Super-Kamiokande(SK) to anti-electron neutrino by detecting total 8MeV gamma from Gd neutron capture.


In addition, we need an algorithm that could effectively select the neutron capture events and reject the BG ones.

In this study, I evaluated the neutron capture efficiency in both SK-VI and SK-VII using neural network, and obtained higher capture efficiency than the conventional method while maintaining low BG contamination.

1. Introduction and Objective • Gadolinium sulfate Octa-hydrate was loaded in SK on Jul.2020 for increasing detection efficiency of IBD. $\overline{v_e} + p \rightarrow e^+(prompt) + n$ **2. Neutron data taking with AmBe source** generation ge

NHits: The number of PMT hit in 14nsec. The events NHits \geq 7hits are selected as neutron capture candidates!	TagOut: Identification value (0 to 1) → Set the threshold of TagOut, so that neutron capture events are selected, and BG events are rejected efficiently.	$10^{10^{10^{10^{10^{10^{10^{10^{10^{10^{$	40 45 to 20 30 40 50 60 meanDirAngleMean	100 00 00 00 00 00 00 00 00 00 00 00 00	10 ² 10 10 10 10 10 10 10 10 10 10	10 ³ 0 ² 0 0 0 5 10 15 20 25 30 35 40 45 OpeningAngleStdev (1degree/1bin)	Image: Second
4. AmBe MC simulation		6. The res	ults of	f the tage	ging eff	ficiency	
• Used MC program: SKG4 (Geant4 for SK system)		SK-VI	Neutro	on tagging ef	fficiency	BG conta	mination
 Injected particles: ①γ(4.4MeV)+neutron(2~6MeV) or only neutron(②6~10MeV or ③0~3MeV) 		Conventional methods[1]	35.6 ±	2.5(sys+stat	:) %	(2.8±0.1)	×10 ⁻² %
		NN analysis	45.4 ±	<mark>- 3.8(sys+st</mark> a	at) % 👠	(2.0±0.3)×10 ⁻² %
• The number of BGO: 8BGO(Data and MC) and		Up!					
No scintillator(only MC) • BG sample data from SK are appended to the MC.		SK-VII	VII Neutron tagging efficiency			BG contamination	
		Conventional 59.7 ± 1.2(sys+stat) % methods[2]			(3.3±0.6)×10 ⁻¹ %		
5.Optimization of TagOut threshold with MC		NN analysis	63.1 ±	= 1.1(sys+st a	at) % 🐛	(2.0±0.3)	×10 ⁻² %
• Neutron tagging efficiency and BG contamination were calculated by counting tagged as neutron capture events Neutron tagging efficiency[%] = $\frac{\text{Total number of tagged Gd and proton events}}{\text{Total number of prompt events}}$		Up! Obtained higher capture efficiency while maintaining low BG contamination in both phase!					
BG contamination[%] – Total nur	nber of tagged BG events		, MC related	Time variation [%]	Position dependence [%]	Data-MC [%]	Total [%]
Total nu	umber of prompt events	SK-VI SK-VII	0.24 0.35	0.74 0.36	0.73 0.35	3.66 0.88(1BGO)	3.81 1.07 (1BGO)
- 102						2.19(8BGO)	2.28(8BGO)

7. Prospects

Systematic error from prompt and delayed events selection will be investigated.
SK-VII tagging efficiency will be finalized with tuned MC(SKG4).
NN analysis will be introduced into DSNB analysis

8. Reference

[1] M.Harada, "Search for astrophysical electron anti-neutrinos in Super-Kamiokande with 0.01wt% gadolinium loaded water", arXiv:2305.05135v1
 [2] F. Nakanishi, "Evaluation of neutron tagging efficiency on 0.03% Gd mass concentration in SK-Gd experiment", 2023, PoS ICRC2023, 1172.