

Ra-01 resin, Empore Radium Rad Disk.

Photographs of the measurements

1. Sample solution preparation Solve 50g Gd sulfate into 500g 2M HNO₃ and add yield tracer ¹³³Ba(30Bq).

2. Chemical separation of ²²⁶Ra Extract Ra ions using AnaLig® Ra-01. Elute Ra ions by EDTA solution.

3. EDTA pyrolysis

Impurities in the eluent could decrease the sensitivity of the ICP-MS. It is necessary to decompose the EDTA and SO₄ ion.

5. ICP-MS measurement (after ¹³³Ba recovery rate measurement by HPGe) About 1 mL of eluent is measured using ICP-MS. The standard addition method is adopted.

Performance

²²⁶Ra ¹³³Ba recovery ²²⁶Ra amount in Eluent amount contamination eluent(fg/g) rate (%) (g) (µBq) **Procedure Blank 1** 0.24±0.01 1.00 8.8±0.3 48.2±2.4 Procedure Blank 2 0.13±0.01 1.03 4.9±0.1 46.5±2.5 0.19±0.01 53.2±1.8 **Procedure Blank 3** 7.4±0.2 1.09

Procedure Blank

- Contamination caused by containers, reagents, and environment
- Evaluated by performing this method to non-Gd-dissolved HNO₃.
- ²²⁶Ra contamination : 7.0 ± 1.1 μ Bq
- Assuming 50g $Gd_2(SO_4)_3\cdot 8H_2O$ dissolving,

this value corresponds to $0.29 \pm 0.05 \text{ mBq/kg(powder)}$.

- The detection limit is 0.43 mBq/kg (99.73% CL).

 \rightarrow This limit meets the SK-Gd requirement.

This method takes only 3 days to process a batch of samples, including the procedure blank measurement.

Application to SK-Gd samples

	²²⁶ Ra amount in eluent(fg/g)	Eluent amount (g)	²²⁶ Ra contamination (µBq)	¹³³ Ba recovery rate (%)	Sample amount (g)	²²⁶ Ra concentration in Gd sulfate (mBq/kg)	99.73% CL. upper limt (mBq/kg)
Procedure Blank	0.37±0.02	1.01	13.7±0.7	not measured	-	0.89±0.06 0.55±0.03	1.06 0.63
SK-Gd Sample A	0.30±0.01	1.15	12.6±0.4	30.3±1.3	50.1	0.84±0.05	0.98
SK-Gd Sample B	0.13±0.01	1.21	5.8±0.4	48.8±0.8	51.2	0.23±0.02	0.29
 The new n ²²⁶Ra cond 	The new method was applied to SK-Gd samples. ²²⁶ Ra concentration in the samples are						
comparab	$\frac{\text{Table 1: Criteria of radioactive impurities in Gd_2(SO_4)_3 \cdot 8H_2O \text{ powder.}}{\text{Chain Isotope Criterion [mBq/kg] Physics target}}$					$\frac{\text{Gd}_2(\text{SO}_4)_3 \cdot 8\text{H}_2\text{O powder.}}{\text{Q/kg] Physics target}}$	

 The ²²⁶Ra amounts in the samples meet the SK-Gd requirement.

HPGe result: (A)<0.46, (B)<0.60 mBq/kg</p>

SK-Gd requirement for Gd sulfate								
able 1: Criteria of radioactive impurities in $Gd_2(SO_4)_3 \cdot 8H_2O$ powder.								
Chain	Isotope	Criterion [mBq/kg]	Physics target					
23811	$^{238}\mathrm{U}$	< 5	SRN					
U	226 Ra	< 0.5	Solar					
232Th	232 Th	< 0.05	Solar					
1 11	228 Ra	< 0.05	Solar					
23511	$^{235}\mathrm{U}$	< 30	Solar					
U	$^{227}Ac/^{227}Th$	< 30	Solar					

- Numerous experiments utilize Gd to detect anti-v via IBD or to remove neutron BG.
- ▶ HPGe measurements for $Gd_2(SO_4)_3 \cdot 8H_2O$ takes ~20 days after arrival.
- This study developed a new method to rapidly measure the ^{226}Ra concentration in $Gd_2(SO_4)_3\cdot 8H_2O.$
- This method requires only 3days to measure a batch of samples.
- Procedure blank : 0.29 ± 0.05 mBq/kg
- Detection limit : 0.43 mBq/kg (99.73% CL)
- ▶ The method was applied to two $Gd_2(SO_4)_3 \cdot 8H_2O$ samples from SK-Gd. It
- was found that the amount of ²²⁶Ra in the samples is within acceptable limits for continuing ⁸B solar neutrino measurements in SK-Gd.
- This study can be used where a rapid evaluation of 226Ra in

 $Gd_2(SO_4)_3\cdot 8H_2O$ is required.

Keishi Hosokawa, UGAP2024, Mar. 4-6th, 2024