Laser-induced luminescence spectroscopy of Gd³⁺ ions in aqueous solution and its application to portable monitoring system Yoshihiro Iwata^{A,*}, Hiroyuki Sekiya^B, Chikara Ito^A (^AJapan Atomic Energy Agency, ^BICRR, the University of Tokyo)

1. Introduction

SK-Gd experiment

The SK-Gd experiment is currently ongoing where gadolinium (Gd) sulfate is dissolved in a water Cherenkov detector to increase the detection sensitivity of supernova relic neutrino events.

- ► Delayed coincidence technique for $\overline{v_e}$ detection
- ► Large neutron absorption cross section of Gd
- ► Gd concentration: $0.01\% \rightarrow 0.03\% \rightarrow 0.1\%$ current status (0.03% Gd)

R = 50%, $\Delta t \sim 120 \ \mu s$ [0.01% Gd] R = 75%, $\Delta t \sim 60 \ \mu s$ [0.03% Gd] R = 90%, $\Delta t \sim 20 \ \mu s$ [0.1% Gd, final goal] γ -rays Capture (~8 MeV in total) rate R $(t = t_1)$ Interval $\Delta t = t_0 - t_1$ [Delayed coincidence]

■ **Gd³⁺ emission background**

Gd³⁺ ions are excited by the Cherenkov light from cosmic muons, and the subsequent emission at 312 nm can be a background (BG) source.

[1] J-C.G. Bünzli, S.V. Eliseeva, "Basics of Lanthanide Photophysics",

Lanthanide Luminescence (2010) pp. 1-45. [2] S. Lis et al., Journal of Alloys and Compounds 323-324 (2001) 125-127.

⁸S_{7/2} rad Gd³⁺

emission detection D = 39.3 m

2. Gd³⁺ ion emission measurement

Experimental setup

- Laser-induced luminescence spectroscopy of Gd³⁺ ions in aqueous solution \triangleright
- Commercially available $Gd_2(SO_4)_3 \cdot 8H_2O$ sample dissolved in \triangleright (I) ultrapure water with 0.5-2.0 mol/l SO_4^{2-} or 10^{-6} - 10^{-4} mol/l NO_3^{--} added for confirming the quenching effect, and (II) ultrapure water for measuring the excitation spectrum

- Excitation of Gd³⁺ ions by frequency doubling of a pulsed \triangleright (I) Nd: YAG laser at 532 nm, and (II) dye laser at 490-510 nm (tunable)
- PMT signal of Gd^{3+} emission at 312 nm $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ \triangleright was observed with an oscilloscope.
- [3] W.T. Carnall, "The absorption and fluorescence spectra of rare earth ions in solution", Handbook on the Physics and Chemistry of Rare Earths 3 (1979) pp. 171-208.

3. Simulation study

Gd³⁺ (0.1% Gd)

Simulation assumptions

Cherenkov photon wavelength: 200-800 nm \triangleright

Attenuation length \triangleright \rightarrow Right figure

Simulation geometry

absorption by water

Cherenkov

Calculation results $(\tau_{obs} = 3 \text{ ms})^{[5]}$

[5] Y. Iwata et al., Prog. Theor. Exp. Phys. 2022 (2022) 123H01.

- Reabsorption of emission at 312 nm by other Gd³⁺ ions is considered to \triangleright suppress the BG rate increase with higher Gd concentration.
- <0.1 pe/µs expected for Gd concentrations of up to 0.1%, which is \triangleright sufficiently lower than the dark noise rate of PMTs.
 - 0.03% Gd, τ_{obs} = 3 ms data

0.1% Gd, τ_{obs} = 3 ms data

- Quenching by anions (0.1% Gd) [4] J-J Vuilleumier et al., J. Chem. Soc. Faraday Trans. 1 85(8) (1989) 2605-2613.
 - ► Quenching by anions leads to shorter $\tau_{obs} = (1/\tau_{rad} + 1/\tau_{OH})^{-1}$.
 - Quenching by SO_4^{2-} ions is negligible, and the observed $\tau_{obs} \sim 2-3$ ms. \triangleright
 - \sim NO₃⁻ ions show strong quenching, as reported in [4].

- FWHM ~ 100 cm⁻¹ and ε ~ 0.001 M⁻¹·cm⁻¹ at non-resonant wavelengths

4. Portable monitoring system

Characteristics and current progress

- Real-time measurements of Gd³⁺ concentration \triangleright and emission lifetime without contamination during water sampling
- Portable Nd:YAG laser available: Minilite \triangleright \rightarrow Compact and good power stability, but non-resonant 266 nm excitation
- High-OH multimode fiber (M133L02) \triangleright for transmission of emission signals
- \triangleright divergence of fiber output light etc.

5. Conclusion

■ Gd³⁺ ion emission in a water Cherenkov detector

- Quenching by SO_4^{2-} ions is negligible, and the expected Gd^{3+} emission BG rate from cosmic muons in SK-Gd is sufficiently lower than the dark noise rate of PMTs. \triangleright
- A portable monitoring system for real-time measurements of Gd^{3+} concentration and emission lifetime is currently under development. \triangleright