Axion Mass from Small Instantons? Takafumi Aoki ICRR, the University of Tokyo

This work is in progress with Masahiro Ibe, Satoshi Shirai and Keiichi Watanabe.

Solution to Strong CP Problem

► **Massless quark**: QCD θ -angle is absorbed by chiral rotations. \rightarrow A solution to the strong CP problem.

Can we solve the strong CP problem, with massless fermions in UV?

Small Instantons

Situation: Axion couples to instantons of $G/SU(3)_{QCD}$

(i.e. broken, non-QCD part of G).

<u>**Question</u></u>: Instantons with a size \leq \Lambda_{\text{CONFINE}}^{-1} exists. Such "small instantons**" contribute to the axion mass?</u>

- 1. Massless fermions must not remain in low energy. \rightarrow confinement of hidden gauge dynamics in UV.
- Axion appears as a "pion" of hidden gauge dynamics ("composite axion models.")
 - \rightarrow Peccei-Quinn (PQ) mechanism.
- 3. Such models overcome "axion quality problem."

Does the axion mass increase by hidden dynamics?

 \rightarrow It affects the search strategy of QCD axion.

Models with Hidden Confinment

Symmetry breaking by G_{CONFINE}:

Axion Mass and Fermion Zero Modes

Q. Axion mass from small instantons?

Fermion zero modes are crucial.

1. What are "zero modes"?

Oscillations along them do not change the action S.

2. When fermion zero modes are present:

 $\int \mathcal{D}\psi \exp(iS)O \propto \int d\xi^{(0)}(\text{const.}) = \mathbf{0} ,$ (except for *O* including all the zero modes.)

3. When interactions are added:

S "respond" to oscillations along zero modes.

Confinment of G_{CONFINE}

• EW-scale

QCD-scale

► GAUGE: $G \supset SU(3)_{QCD}$ ► GLOBAL: PQ (→ Axion)

G depends on models. Dynamical scales: $\Lambda_{\text{CONFINE}} \gg \Lambda_{G}$

Q. Is PQ symmetry **anomalous under**...?

 \rightarrow Non-zero path integral.

(example: QCD instanton effects \propto quark Yukawa couplings.)

What we found (in a model by Redi & Sato (2016)):

Fermion zero modes around small instantons do not interact in a way generating the axion mass.

 \rightarrow No axion mass from small instantons.

* Strictly speaking, some appropriate pairs of small instantons contribute. \leftarrow Effectively QCD instantons with a small size $\sim \Lambda_{\text{CONFINE}}^{-1}$.

Summary

1. With Hidden gauge dynamics, massless fermions in

An example of "Case-2" by Redi & Sato (2016):

 $G = SU(3) \times SU(4) \times \cdots \times SU(4) \supset SU(3)_{QCD}$

UV can solve the strong CP problem. small instantons might enhance the axion mass.

- However, close look at fermion zero modes is needed. We found that axion mass is not enhanced in a model by Redi and Sato (2016).
- Future prospect: A generalization of our result, to be applied to other models.

4 ロ > 4 問 > 4 目 > 4 目 > 目 の