Search for Charged Excited States of Dark Matter with KamLAND-Zen

Kazumi Hata for KamLAND-Zen collaboration

arXiv:2311.09676v1

Research Center for Neutrino Science Tohoku University

WIMPs and co-annihilation

The standard WIMP scenario assumes thermal equilibrium between DM and SM particles in the early stages of the Universe.

 $\rightarrow \langle \sigma v \rangle$, explaining the current dark matter abundance is 3×10^{-26} cm³/s.

If the co-annihilation cross section is large, $\langle \sigma v \rangle < 3 \times 10^{-26} \text{ cm}^3/\text{s}$ can still explain the current DM abundance.

If the mass difference between the WIMP and the excited state $\Delta m(=m_X -$ m_{x^0} > 20 MeV, the negatively charged excitation of the WIMP can form a stable bound state with nuclei. [2]

Case A: positron is emitted $N_z + X^0 \rightarrow (N_z X^-) + e^+$

Case B: neutron is converted to a proton

 $N_z + X^0 \rightarrow (N_{z+1}X^-)$

 N_z : the target nucleus with atomic number Z $X^{0}(X^{-})$: the WIMP ground (excited) state

NX⁻ is formed in an excited state and will de-excite by emitting γ -rays.

Expected signal

$$E_{tot} = \begin{cases} E_b^{(0)} - \Delta m + m_e \text{ (Case A)} (= E_{e^+} + E_{\gamma} + 2m_e) \\ E_b^{(0)} - \Delta m + m_Z - m_{Z+1} \text{ (Case B)} (= E_{\gamma}) \end{cases}$$

 $E_{h}^{(0)}$: the binding energy of the ground states of the bound states with the 9.0 MeV nucleus (depends on the target nucleus: $\mathbf{\tilde{Q}}(1-10 \text{ MeV})$, 18.4 MeV for Xenon)

Intensi

KamLAND-Zen is the suitable detector to search

0.05

(s/₂m₃/s) 10⁻²⁷ **The limit for WIMP-nucleus b** 10⁻²⁸ recombination cross section $\langle \sigma v \rangle$ was set by DM event rate.

$$N_{tot} = \frac{MT N_T \rho_{DM} \langle \sigma v \rangle}{2m_{\chi^0}} \epsilon_{det}$$

 $m_{\chi^0}^{10^5}$ (GeV) $\langle \sigma v \rangle$ can be converted to other physical parameters. Contribution from

 10^{-29}

 10^{-30}

 10^{-31}

 10^{-32}

Case A: a decay width of a new particle Γ_{χ} -

[2] _{Exps.}	EXO-200/ KamlZen/ Xe100	DAMA NaI(Tl)	SNO NaCl	Bore- xino
Nucleus	Xe	Ι	Cl	С
$E_b^{(0)}$ (MeV)	18.4	18.2	6.3	2.7
$MT \ (\mathrm{kg \ yr})$	40/30/0.9	7.5	1274	1.3×10^5

KamLAND Zen Experiment

 $\overline{\mathbf{X}^0}$

Case A

Case **B**

r < 250 cm

Visible Energy (MeV)

- sible Energy (MeV) ✓ Sensitive to *O*(1-10) MeV energy range ✓ Low-BG environment
- Large volume liquid scintillator detector with Xenon nuclei
 - 383 kg in KamLAND-Zen 400 Phase-II
 - 745 kg in KamLAND-Zen 800
- KamLAND-Zen performed searches for the bound state formation of a xenon nucleus and the electrically charged WIMP state.
- The most stringent limits were obtained.

Ref::[1] K. Griest, D. Seckel, PRD 43 (1991) 3191, [2] H. An, et al., PRL 109 (2012) 251302.