P24

Characterization of Lumped Element Kinetic Inductance Detectors on YSZ Substrates for ⁹⁴Zr Double-Beta Decay Search

KAMEI Yuto^{1,2}, ISHIDOSHIRO Koji², ITO Ryota^{1,3}, KOBAYASHI Tatsuya⁵, MIMA Satoru⁴, NAKAJO Yuto⁵, OTANI Chiko^{1,3}, TAINO Tohru⁵ ¹ Center for Advanced Photonics, RIKEN, ² RCNS, Tohoku Univ., ³ Tohoku Univ., ⁴ NICT, ⁵ Saitama Univ.

Double-beta decay is extremely rare radioactive decay in which two neutrons are simultaneously into two protons with two electron emission. It has two mode: two neutrino emission mode $(2\nu\beta\beta)$ and undiscovered neutrinoless mode $(0\nu\beta\beta)$. The key of $0\nu\beta\beta$ detection is high energy resolution of detectors. A lumped-element kinetic inductance detector (LEKID) is a thin-film superconducting resonator with larger sensitive volume. Radiation detection using LEKID is expected to have high energy resolution due to its detection principle. Here, we proposed the ⁹⁴Zr double-beta decay search with LEKID. Yttria-Stabilized Zirconia (YSZ) was utilized for LEKID substrate. This is the first step in realizing the implementation of LEKID on the substrate including zirconium for ⁹⁴Zr double-beta decay search.

1. Double-Beta Decay of 94Zr

Even $2\nu\beta\beta$ of ⁹⁴Zr has not been yet discovered.

• Decay mode

 $^{94}\mathrm{Zr} \longrightarrow ^{94}\mathrm{Mo} + 2e^- + 2\overline{\nu}_e$ 0^+ $\beta\beta$

2. LEKID [4]

- Superconducting resonator with large sensitive volume
- Multi-elements readout possible with a single feedline
- Low energy threshold, and High energy resolution potential

• $2\nu\beta\beta$ half-life prediction and current limits:

Decay mode of $2\nu\beta\beta$	predicted [yr] ^[1]	limit [yr]
$0^+ \longrightarrow 0^+$	9.4×10 ²¹	1.1×10 ¹⁷ [2]
$0^+ \longrightarrow 2_{1^+}$	7.2×10 ³²	2.1×10 ²⁰ [3]

• Previous study

NEMO-2 : Mainly search for 96 Zr $0\nu\beta\beta$ in underground \longrightarrow Limit on ⁹⁴Zr $2\nu\beta\beta$ is byproduct ^[2]. HPGe detector experiments : High sensitivity to $0^+ \rightarrow 2_1^+(\gamma)$ ^[3]

• Key of improvement

High efficiency \rightarrow "source" = "detector" High S/N \longrightarrow High energy resolution [Detection Principle]

Energy input^a → Cooper pair breaking^a \rightarrow Kinetic inductance change^b \rightarrow Resonant frequency change

3. Fabrication and Measurement method

• Substrate

Yttria-stabilized Zirconia (YSZ, Y₂O₃:**Zr**O₂)

→ New attempt as substrate material of KID Natural abundance of 94 Zr is $\sim 17\%$.

 ZrO_2 is made stable at room temperature by doping Y_2O_3 . 10×10×0.5 mm³ mono-crystal (orientation (100)) Yttria concentration : 9.5 mol% and 20 mol% Thermal properties are Y conc. dependent^[6]. \rightarrow Impact on LEKID?

• **Design**

14 LEKIDs with different performance

- + resonant frequency f_0 : 4.55 5.85 GHz (on Si substrate)
- + line width : $2 4 \mu m$, resonator volume : 1843.8 μm^3
- + gaps between feed line and LEKID : $20 200 \,\mu m$

4. Result and Discuss

Both LEKIDs with Y9.5 mol% and 20 mol% were worked.

All resonant peaks (14/14) in transmittance S_{21} spectra were observed.

resonant frequency : 2.55 — 3.7 GHz Not depend on Y concentration Consistent frequency trend as $f_0 \propto^{-1} \sqrt{\epsilon}$ cf. Dielectric constant :Si 2.4, YSZ ~27

peaks detected (a) < 3 K

Same shape in both Y concentration.

Inconsistent with Mattis-Bardeen model \longrightarrow RF loss^[7]?? Kondo-effect^[8]??

840 B • Fabrication Nb DC spattering \rightarrow Photolithography \rightarrow Nb dry etching Photolithography performed at Nanoscience Joint Laboratory.

• **RF Measurement**

- + ³He/⁴He dilution refrigerator base temp. ~0.13 K (Critical temp. of Nb : 9.2K)
- Vector Network Analyzer range: 10 MHz – 13.5 GHz

Dilution refrigerator

~10⁵ Order for both Y conc. 10 less than LEKID on Si → Impedance mismatching?? LEKID was designed for fabrication on Si substrates.

Y conc. of YSZ doesn't impact the frequency characteristics of LEKID.

5. Acknowledge and References

This work was supported by JSPS KAKENHI Grant Numbers JP23K13138. The exposure process in photolithography was performed using a Maskless UV lithography system at Nanoscience Joint Laboratory of CEMS, RIKEN.

[1] J. Suhonen, Nucl. Phys. A 864 63-90 (2011) [2] E. Celi *et al.*, Eur. Phys. J. C. 83:396 (2023) [3] R. Arnold *et al.*, Nucl. Phys. A 658, 299-312 (1999)

[4] S. Doyle, *et al.*, J. Low Temp. Phys., 151(1):530-536 (2008) [5] P. K. Day, et al., Nature, Vol.425, pp.817-821 (2003) [6] J. F. Bisson, et al., J. Am. Ceram. Soc. 83 [8], 1993-1998 (2000) [7] H. McCarrick, et al., Rev. Sci. Instrum., vol. 85, 123117 (2014) [8] T. Noguchi, et al., IEEE Trans. Appl. Supercond., vol. 28, 4, 1-6 (2018)

March 5, 2024. UGAP2024@Tohoku University, Miyagi