The Boltzmann Neutrino Radiation Hydrodynamic Simulation of a Core-collapse Supernova in the Three-dimensional Space

Wakana Iwakami, Akira Harada, Hiroki Nagakura, Ryuichiro Akaho, Hirotada Okawa, Shun Furusawa, Hideo Matsufuru, Khosuke Sumiyoshi, Shoichi Yamada

Neutrino Heating Mechanism for Core-collapse Supernovae

Euler Equations

Hydrodynamics
$\begin{array}{lr}\text { Continuity Equation: } & \frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x^{j}}\left(\rho v^{j}\right)=0 \\ \text { Equations of Motion: } & \frac{\partial}{\partial t}\left(\rho v_{i}\right)+\frac{\partial}{\partial x^{j}}\left(\rho v_{i} \nu^{j}+P \delta_{i}^{j}\right)=-\rho \frac{\partial \psi}{\partial x^{j}}-G^{i} \\ \text { Energy Equation: } & \frac{\partial}{\partial t}\left(\frac{1}{2} \rho v^{2}+e\right)+\frac{\partial}{\partial x^{j}}\left[\left(\frac{1}{2} \rho v^{2}+e+P\right) v^{j}\right]=-\rho v^{j} \frac{\partial \psi}{\partial x^{j}}-G^{0} \\ \text { Time-Evolution Equation of Electron Number: } & \frac{\partial}{\partial t}\left(\frac{\rho Y_{e}}{m_{A}}\right)+\frac{\partial}{\partial x^{j}}\left(\frac{\rho Y_{e}}{m_{A}}\right)=-\Gamma\end{array}$
Poisson's equation for gravity: $\Delta \psi=4 \pi G \rho$ EOS table of Nuclear Matter
(LS K=220MeV, Furusawa+Togashi, etc.)
ρ : density, v : velocity, P : pressure, e : internal energy, ψ : the gravitational potential, G : the gravitational constant $\left(=6.67 \times 10^{-8}\left[\mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{~s}^{2}\right]\right), Y_{e}$: electron fraction, m_{A} : the atomic mass unit, $G^{0}:$ neutrino radiation energy, $G^{i}:$ neutrino radiation pressure, Γ : deleptonization rate $\left(\equiv \Gamma_{v_{e}}-\Gamma_{\bar{v}_{e}}\right), \Gamma_{s}:$ neutrino number density

Neutrino Energy Density ($\mu=0$)
Radiation Pressure ($\mu=1,2,3$)

| Neutrino Number Density |
| :--- | :--- |
| $s:$ species $\left(s=v_{e}, \bar{v}_{e}, v_{x}\right)$ |$\quad \Gamma_{s} \equiv \int\left(\frac{\delta f}{\delta \tau}\right)_{\text {collision }(s)} d^{3} \mathbf{p} \quad \Gamma \equiv \Gamma_{v_{e}}-\Gamma_{\bar{v}_{e}}$

Quadrupolar Equation of the Gravitational Wave
$h_{+}=\frac{1}{r}\left[\ddot{I}_{x x} \cos ^{2} \theta+\ddot{I}_{y y} \sin ^{2} \phi+\ddot{I}_{x y} \sin ^{2} 2 \phi \cos ^{2} \theta+\ddot{I}_{z z} \sin ^{2} \theta\right.$
$\left.-\left(\ddot{I}_{x z} \cos \phi+\ddot{I}_{y z} \sin \phi\right) \sin 2 \theta-\ddot{I}_{x x} \sin ^{2} \phi-\ddot{I}_{y y} \cos ^{2} \phi+\ddot{I}_{x y} \sin 2 \phi\right]$
$h_{x}=\frac{2}{r}\left[\frac{1}{2}\left(\ddot{I}_{y y}-\ddot{x}_{x x}\right) \sin 2 \phi \cos \theta\right.$
$\left.+\ddot{I}_{x y} \cos 2 \phi \cos \theta+\left(\ddot{I}_{x z} \sin \phi+\ddot{I}_{y z} \cos \phi\right) \sin \theta\right]$
$\ddot{I}_{i j}=\frac{G}{c^{4}} \int d^{3} x\left[2 \rho v_{i} v_{j}-\rho\left(x_{i} \frac{\partial \Phi}{\partial x_{j}}+x_{j} \frac{\partial \Phi}{\partial x_{i}}\right)\right]$

Boltzmann Equation

Neutrino Radiation

Neutrino distribution function
$f\left(t, r, \theta, \phi ; \varepsilon_{v}, \mu_{v}, \phi_{v}\right)$
Boltzmann Equation
$\frac{d x^{\mu}}{d \lambda} \frac{\partial f}{\partial x^{u}}+\frac{d p^{i}}{d \lambda} \frac{\partial f}{\partial p^{i}}=\left(\frac{\delta f}{\delta \lambda}\right)_{\text {collision }}$
$\left(\frac{\delta f}{\delta \tau}\right)_{\text {collision (s) }}=\left[\frac{\delta f}{\delta \tau}\right]_{\text {emis-abs (s) }}+\left[\frac{\delta f}{\delta \tau}\right]_{\mathrm{scat}(\mathrm{s})}+\left[\frac{\delta f}{\delta \tau}\right]_{\mathrm{pair}(\mathrm{s})}$
$\left[\frac{\delta f}{\delta \tau}\right]_{\text {emis-abs }}=-R_{\text {abs }}(\varepsilon, \Omega) f(\varepsilon, \Omega)$
$+R_{\text {emis }}(\varepsilon, \Omega)[1-f(\varepsilon, \Omega)]$.
$\left[\frac{\delta f}{\delta \tau}\right]_{\text {scat }}=-\int \frac{d \varepsilon^{\prime} \varepsilon^{\prime 2}}{(2 \pi)^{3}} \int d \Omega^{\prime} R_{\text {sata }}\left(\varepsilon, \Omega ; \varepsilon^{\prime}, \Omega^{\prime}\right) f(\varepsilon, \Omega)$
$\times\left[1-f\left(\varepsilon^{\prime}, \Omega^{\prime}\right)\right]+\int \frac{d \varepsilon^{\prime} \varepsilon^{2}}{(2 \pi)^{3}} \int d \Omega^{\prime} R_{\text {scat }}\left(\varepsilon^{\prime}, \Omega^{\prime} ; \varepsilon, \Omega\right)$
$\times f\left(\varepsilon^{\prime}, \Omega^{\prime}\right)[1-f(\varepsilon, \Omega)]$,
$\left[\frac{\delta f}{\delta \tau}\right]_{\text {pair }}=-\int \frac{d \varepsilon^{\prime} \varepsilon^{\prime 2}}{(2 \pi)^{3}} \int d \Omega^{\prime} R_{\text {pair-ani }}\left(\varepsilon, \Omega ; \varepsilon^{\prime}, \Omega^{\prime}\right)$
$\times f(\varepsilon, \Omega) \bar{f}\left(\varepsilon^{\prime}, \Omega^{\prime}\right)+\int \frac{d \varepsilon^{\prime} \varepsilon^{2}}{(2 \pi)^{3}} \int d \Omega^{\prime} R_{\text {pair-emis }}\left(\varepsilon, \Omega ; \varepsilon^{\prime}, \Omega^{\prime}\right)$
$\times[1-f(\varepsilon, \Omega)]\left[1-\bar{f}\left(\varepsilon^{\prime}, \Omega^{\prime}\right)\right]$,
Ω^{\prime} denotes the angle variables after/before the scattering $\bar{f}\left(\varepsilon^{\prime}, \Omega^{\prime}\right)$ denotes the distribution of anti-neutrinos, which is the angle-averaged distribution in the previous time step.

Emission/Absorption

Electron Capture
$e^{-}+p \longleftrightarrow \nu_{e}+n$ [ecp]
Anti-Electron Capture
$e^{+}+n \longleftrightarrow \bar{\nu}_{e}+p$ [aecp]
Electron Capture on nuclei
$e^{-}+A \longleftrightarrow \nu_{e}+A^{\prime}$ [eca]

Scattering
Neutrino-Nucleon scattering
$v+N \longleftrightarrow \nu+N$ [nsc]
Neutrino-Nuclei scattering
$v+A \longleftrightarrow v+A$ [csc]
Neutrino-Electron scatering
$v+e \longleftrightarrow v+e$ [esc]

Pair Process
Electron-positron process
$e^{-}+e^{+} \longleftrightarrow \nu_{i}+\bar{\nu}_{i}$ [pap]
Nucleon-nucleon bremstrahlung
$N+N \longleftrightarrow N+N+\nu_{i}+\bar{\nu}_{i}[\mathrm{nbr}]$

Prompt Convection

(Iwakami et al. 2020)

Time Evolution of the Shock Wave

Time History of the Gravitational Wave from Matter

