Exploring Solar Neutrinos through Charged Current Reactions in ¹³⁶Xe with Delayed Coincidence Measurement using KamLAND-Zen

Takahiko HACHIYA for the KamLAND-Zen Collaboration Research Center for Neutrino Science, Tohoku University, 980-8578, Japan Email: takahiko@awa.tohoku.ac.jp

Introduction: CC reaction of ¹³⁶Xe (XeCC)

- Charged current reaction of ¹³⁶Xe and v_e (XeCC): ¹³⁶Xe + v_e \rightarrow ¹³⁶Cs^{*} + e⁻
 - Mostly goes to 1⁺ (590 keV or 840 keV) states of ¹³⁶Cs
 - Sensitive to $E_v > 79$ (Q-value[1]) + 590 = 670 keV
- Recently low-lying isomeric states in ¹³⁶Cs with O(100) ns lifetimes were found[2, 3].
- With ns-resolution detectors, we can measure v_e using ¹³⁶Xe through delayed coincidence.

[1]: PRC 108, 045502 (2023). [2]: PRL 131, 052502 (2023). [3]: PRL 131, 052501 (2023).

Solar models: High-metallicity (GS98)[4] vs Low-metallicity (AGSS09)[5]

XeCC Event rates (w/o resolution)	

	XeCC	Event rates ($\Delta E/E = 1\%/\sqrt{E}$ [MeV])
\leq	0.4 🗆	

- CNO solar neutrino flux is sensitive to the metallicity.
- Current situation:
 - Borexino's measurement favors high metallicity models[6]
 - Uncertainties of the models and the measurement are all at $\sim 15\%$.
- Toward higher precision?
 - Traditional method (v-e scattering) faces challenges in BG control.
 - Advantages of XeCC:
 - Potentially BG free delayed coincidence measurement
 - 1:1 energy reconstruction allows distinction from other solar-v's
- Expected XeCC rates (B16-GS98 [7], oscillated)
 - ⁷Be: 5.9/yr/ton, pep: 0.79/yr/ton, CNO: 0.92/yr/ton
- ⁷Be-v's are within the reach of current sub-ton scale detectors
- 100 ton exp. to reach smaller uncertainty than models

[4]: Spa. Sci. Rev. 85, 161-174 (1998). [5]: Annu. Rev. Astro. 47, 481-522 (2009). [6]: PRD 108, 102005 (2023). [7]: ApJ 835, 202 (2017).

	¹³⁶ Xe mass [ton]	CNO-v flux unc. [%] (5yr obs.)	Target
KamLAND-Zen 800	0.68	-	⁷ Be-v (Proof of concept)
KamLAND2-Zen	1.0	40%	CNO-v (a few events)
Future 5 ton exp.	5.0	20%	¹³ N/ ¹⁵ O separation
Future 10 ton exp.	10	15%	Unc. same level as models
Future 100 ton exp.	100	5%	Far better unc. than models. New implication?

Feasibility of KamLAND-Zen

Challenges

- Single vs Multi pulse discrimination
 - Multi pulse fit
 - Hits: N_1 , N_2 (, N_3)
 - Time diff.: ΔT_{12} (, ΔT_{23}) [ns]
 - The discrimination power depends on $(N_1, N_2, \Delta T_{12})$

- Detector
- 100 200 0 TOF-subtracted hittime [ns]
- Xe gas dissolved organic liquid scintillator

JINST 16 P08023 (2021

- World's largest ¹³⁶Xe exposure: 0.68 ton x 5 yrs.
- Scint. decay time ~5 ns.
- Photons detected by 1879 PMTs (240 p.e./MeV)
- Dark hits: 0.04 p.e./ns ~ 10 keV equiv. per event.
- DAQ
 - Trigger threshold: ~0.3 MeV
 - Only 1st pulse can be triggered
 - Event window: ~200 ns
 - 2nd (and 3rd) pulses can be detected if in the event window of the 1st pulse
- Expected ⁷Be-v signal in KamLAND-Zen
 - Mode 2 (double pulses) is most promising
 - $E_1 = 860 140 79 = 640 \text{ keV} \sim 130 \text{ hits}$
 - $E_2 + E_3 = 66 + 74 = 140 \text{ keV} \sim 24 \text{ hits}$

- Mis-id of single pulse required to be $< 10^{-5}$
 - $(2\nu\beta\beta \text{ rate}) > 10^5 \text{ x} (^7\text{Be-v rate})$
 - Fractions satisfy the condition (at ⁷Be-v energy)
 - Mode 1: 18%
 - Mode 2: 33%
 - Mode 3: 7.3%
- Larger 1st pulse makes it harder to find delayed pulses
 - CNO-v detection is difficult for KamLAND-Zen 800
- Accidental BG: Anything + $2\nu\beta\beta$
 - Total single rate in the detector (> 10 hits): ~5 kHz
 - $^{14}C(Q_{\beta} = 156 \text{ keV})$ rate in the LS (r < 6.5 m): ~1 kHz
 - Others in the buffer (6.5 < r < 8.5 m): ~4 kHz
 - Accidental coincidence probability: ~10⁻³/event
 - 10² reduction required to reach ⁷Be-v rate
 - Vertex reconstruction on delayed pulses in development

Known single event (²¹⁴Po data) Fit result

Prospects

- [Current] KamLAND-Zen 800: ⁷Be-v detection?
 - (If accidental BGs are successfully mitigated)
 - ⁷Be-v original number of events (0.68 ton x 5yr): 20 evt Fiducial volume ratio: 40%
- [Future] KamLAND2-Zen: CNO-v detection?
 - x5 light yield to bring better single/multi pulse discrimination
 - Delayed 70 keV $\rightarrow \Delta T > 50$ ns Delayed 140 keV $\rightarrow \Delta T > 10$ ns

1	MeV	CNO-v signal in KL2-Zen (MC)
s/ns	-	1st:
hits	40	781 keV
	30	857 hits
	20	2nd: 3rd:

- Signal efficiency: 17%
 - Mode 1: 58% (branch) x 18% (single/multi discri.)
 - Mode 2: 14% (branch) x 33% (single/multi discri.)
 - Mode 3: 27% (branch) x 7.3% (single/multi discri.)
- Expected number of events (after cuts): 1.4 evt
- Scintillating inner balloon: Full Xe (~1 ton) available
- Event window enlargement (200 ns \rightarrow 1000 ns)
 - >90% multi pulses containment
 - Clear detection of the 3-fold coincidence (Mode 1)
- Expected number of events (5yr, ~90% eff.)
 - ⁷Be: 27 evt, pep: 3.6 evt
 - CNO (energy selection eff. 58%): 1.4 evt

XeCC Event rates in KamLAND2-Zen $(\Delta E/E = 3\%/\sqrt{E} [MeV])$

Summary

- $^{136}Xe + v_e \rightarrow ^{136}Cs^* + e^-$: Potential new way to detect v_e
- 100 ton ¹³⁶Xe detector to perform CNO-v flux meas. at 5% unc.
- Feasibility of KamLAND-Zen (800)
 - Single/multi pulse separation ability is not perfect, but ok
 - Accidental BG: Vertex recon. on a delayed pulse is necessary
 - If achieved, ⁷Be-v detection is possible.
- KamLAND2-Zen
 - Possible CNO-v detection