Estimation of ⁸⁵Kr background in the XENONnT using delayed coincidence count

Component

²¹⁴Pb

Materials

⁸⁵Kr

⁸⁵Kr

Yoshino Kaminaga (the Univ. of Tokyo) for the XENON collaboration

- Measure Kr in Xe by the rare gas mass spectroscopy(RGMS)
- Measure ⁸⁵Kr/^{nat}Kr ratio in air
- Estimate ⁸⁵Kr in Xe.
- ∴ ⁸⁵Kr/^{nat}Kr ratio uncertainty is not taken account.

Motivation : to measure ⁸⁵Kr in Xe directly using its signal

New estimation method: delayed coincidence count

⁸⁵Kr rare decay event with prompt β & secondary γ

Independent of ⁸⁵Kr/^{nat}Kr

- Can be used as Kr monitor
- The larger the exposure, the lower the upper limit of ⁸⁵Kr Cons:
- Time-consuming (due to the branching ratio ~0.43%)

III. Selection criteria for ⁸⁵Kr rare decay events

From "Search for New Physics in Electronic Recoil Data from XENONnT", PRL, 129, 161805 (2022

⁸⁵Kr rare decay event

- $S1_{\beta}$: Scintillation light by prompt β
- $S1_{\gamma}$: Scintillation light by secondary γ
- $S2_{\beta}$, $S2_{\nu}$: Ionization signals by $\beta \otimes \gamma$ May be merged due to its wide width

I. ⁸⁵Kr background in XENONnT

Rare event search experiment

Precise background estimation

Contaminated in collecting Xe

Constraint

[Events/t \cdot y \cdot (1~140)keV]

(570, 1200)

 270 ± 50

90 ± 60

A BG component especially

Background model B0 with fit constraints

in low energy region

Reduction of background sources

Selection

- Select ⁸⁵Kr events and exclude BG events
- Main BG : Accidental coincidence (AC) events
- Criteria : 99% signal quantile or good S/√N ratio

Parameters:

Used data

- Geant4-based simulation
- ²²⁰Rn calibration data as $S1_{\beta}$, $S2_{\beta}$ signal
- e+e- annihilation events data as $S1_{\nu}$, $S2_{\nu}$ signal

IV. Result in Science Run 0

Science Run 0 (SR0) has 97.1d exposure time

Validation of BG estimation

Check sidebands of selections

- **Time difference** [10 μs, 1010 μs] : 52.1 events/SR0(expected), 52 events/SR0(found)
- ◆ AFT difference [-0.4, 0.4] 99% signal region : 4.2 events/SR0(expected), 3 events/SR0(found)
- .: Expected BG numbers are consistent with found events. ⁸⁵Kr event search
- Expected : 0.51 ± 0.02 events/SR0 (at 56 ppq of Kr)
- Found : 0 events in SR0 \Rightarrow Probability : 60%
- .: Upper limit of Kr concentration (90% CL) = 270 ppq

V. Summary and future

- Signal acceptance ~31%, the main loss was caused S1s merged events.
- There would be ~0.18 AC BG events in SR0 (~100d).
- The result in SR0 was consistent with a result by RGMS.
- Improving the signal acceptance by evaluating S1s merged ratio.
- Reducing AC BG by optimizing selection criteria using S/ \sqrt{N} ratio.
- Preparing the online Kr monitor.
- Giving an upper limit of ⁸⁵Kr abundance by extending exposure.
- Contributing to solar pp ν, DM search...

Upper limit curves of Kr concentration (90% CL)