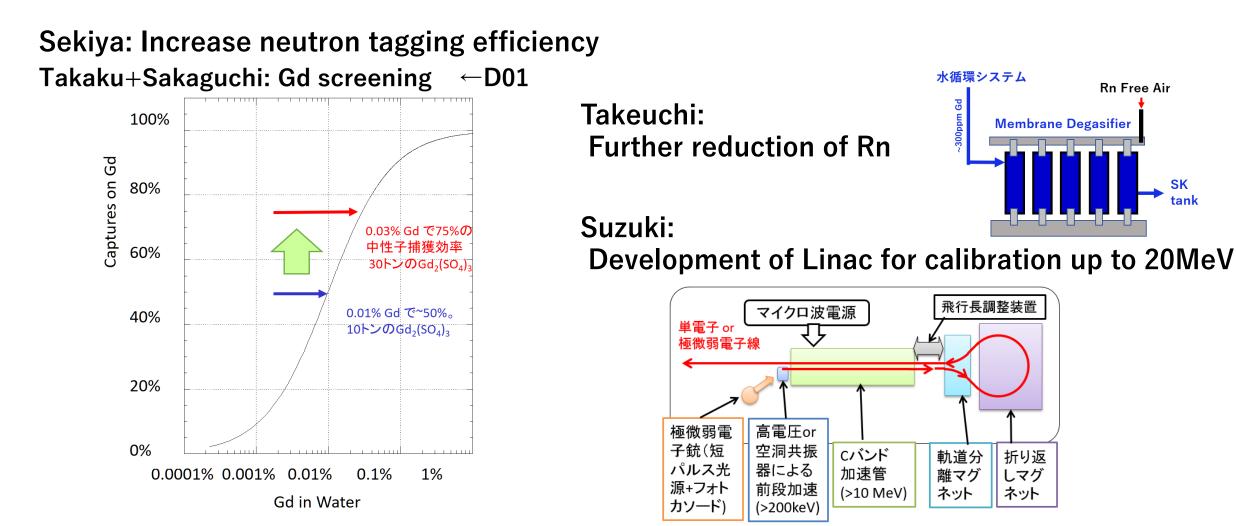


2018-2023 Super-Kamioaknde Gadolinium Project Hiroyuki Sekiya



Unraveling the History of the Universe and Matter Evolution with Underground Physics(UGAP2024) @Tohoku University

Mar. 6, 2024

C01 Group in UGAP

 Unraveling the History of the Universe and Matter Evolution by SN neutrinos with Upgraded Super-Kamiokande

2

2018-2024 Paper (SK-Gd Physics)

- Performance of SK-Gd's Upgraded Real-time Supernova Monitoring System, **Y. Kashiwagi** et al. (The Super-Kamiokande Collaboration), To be Submited to A, stro. Phys. J., arXiv:24XX.XXXX
- Solar neutrino measurements using the full data period of Super-Kamiokande IV, The Super-Kamiokande Collaboration, accepted by Phys. Rev. D, arXiv:2312.12907
- Measurement of the neutrino-oxygen neutral-current quasielastic cross section using atmospheric neutrinos in the SK-Gd experiment, S. Sakai et al. (The Super-Kamiokande Collaboration), Phys. Rev. D 109, L011101 arXiv:2311.03842
- Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01wt% gadolinium-loaded water M.
 Harada et al. (The Super-Kamiokande Collaboration), The Astrophysical Journal Letters, 951:L27 arXiv:2305.05135
- Measurement of the cosmogenic neutron yield in Super-Kamiokande with gadolinium loaded water, M. Shinoki et al. (The Super-Kamiokande Collaboration), Phys. Rev. D 107, 092009 (2023) arXiv:2212.10801
- Search for Cosmic-Ray Boosted Sub-GeV Dark Matter Using Recoil Protons at Super-Kamiokande, The Super-Kamiokande Collaboration, Phys. Rev. Lett. 130, 031802 (2023) arXiv:2209.14968
- Neutron tagging following atmospheric neutrino events in a water Cherenkov detector, The Super-Kamiokande Collaboration, Journal of Instrumentation, Volume 17, October 2022 arXiv:2209.08609
- Searching for Supernova Bursts in Super-Kamiokande IV, M. Mori et al. (The Super-Kamiokande Collaboration), The Astrophysical Journal, 938, 35 (2022) arXiv:2206.01380
- Pre-supernova Alert System for Super-Kamiokande, L. N. Machado et al. (The Super-Kamiokande Collaboration), The Astrophysical Journal, 935, 40 (2022) arXiv:2205.09881

2018-2024 Paper (Cont'd SK-Gd Physics)

- Search for solar electron anti-neutrinos due to spin-flavor precession in the Sun with Super-Kamiokande-IV, The Super-Kamiokande Collaboration, Astroparticle Physics Volume 139, June 2022, 102702 arXiv:2012.03807
- Diffuse supernova neutrino background search at Super-Kamiokande, The Super-Kamiokande Collaboration, Phys. Rev. D 104, 122002 (2021) arXiv:2109.11174
- Search for Tens of MeV Neutrinos associated with Gamma-Ray Bursts in Super-Kamiokande, The Super-Kamiokande Collaboration, Prog. Theor. Exp. Phys. 2021, 103F01 arXiv:2101.03480
- Search for neutrinos in coincidence with gravitational wave events from the LIGO-Virgo O3a Observing Run with the Super-Kamiokande detector, The Super-Kamiokande Collaboration, Astrophys. J. 918 78 (2021) arXiv:2104.09196
- Indirect search for dark matter from the Galactic Center and halo with the Super-Kamiokande detector, The Super-Kamiokande Collaboration, Phys. Rev. D 102, 072002 (2020), arXiv:2005.05109
- Search for Astronomical Neutrinos from Blazar TXS0506+056 in Super-Kamiokande, K. Hagiwara et al. (The Super-Kamiokande Collaboration), Astrophysical Journal Letters, 887 (2019) L6, arXiv:1910.07680
- Sensitivity of Super-Kamiokande with Gadolinium to Low Energy Antineutrinos from Pre-supernova Emission, C. Simpson et al. (The Super-Kamiokande Collaboration), Astrophysical Journal 885, (2019) 133, arXiv:1908.07551
- Measurement of the neutrino-oxygen neutral-current quasielastic cross section using atmospheric neutrinos at Super-Kamiokande, L. Wan et al. (Super-Kamiokande Collaboration), Phys. Rev. D 99, 032005 (2019), arXiv:1901.05281

2018-2024 Paper (Low BG technical)

- K. Ichimura et al., Development of a low-background HPGe detector at Kamioka Observatory, Progress of Theoretical and Experimental Physics, ptad136,
- Y. Sakakieda et al., "Rapid Analysis of 226Ra in Ultrapure Gadolinium Sulfate Octahydrate" Progress of Theoretical and Experimental Physics, ptad117
- H. Hosokawa et al., "Development of ultra-pure gadolinium sulfate for the Super-Kamiokande gadolinium project" Progress of Theoretical and Experimental Physics, Volume 2023, Issue 1, January 2023, 013H01
- Y. Iwata et al., Emission characteristics of gadolinium ions in a water Cherenkov detector Progress of Theoretical and Experimental Physics, Volume 2022, Issue 12, December 2022, 123H01
- S. Ito et al., Improved method for measuring low-concentration radium and its application to the Super-Kamiokande Gadolinium project, Progress of Theoretical and Experimental Physics, Volume 2020, Issue 11, November 2020,113H01
- Y. Nakano et al., Measurement of the radon concentration in purified water in the Super-Kamiokande IV detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 977, 11 October 2020, 164297
- S. Ito et al., Development of a method for measuring rare earth elements in the environment for future experiments with gadolinium-loaded detectors, Progress of Theoretical and Experimental Physics, Volume 2019, Issue 6, June 2019, 063H03
- Evaluation of gadolinium's action on water Cherenkov detector systems with EGADS, Ll. Marti et al., Nuclear Instruments and Methods in Physics Research Section A 959 (2020), 163549 arXiv:1908.11532

2018-2024 Paper (Gd-loadings)

- Second Gadolinium Loading to Super-Kamiokande, The Super-Kamiokande Collaboration, To be submitted to NIMA in a week, arXiv:24XX.XXXX
- First Gadolinium Loading to Super-Kamiokande, The Super-Kamiokande Collaboration, Nuclear Inst. and Methods in Physics Research, A 1027 (2022) 166248 arXiv:2109.00360

In the last 5 years, through SK-Gd Project, 9 students and 6 young researchers wrote significant physics and cutting-edge technical papers.

Super-Kamiokande VII (since July 5, 2022)

Atmospheric v

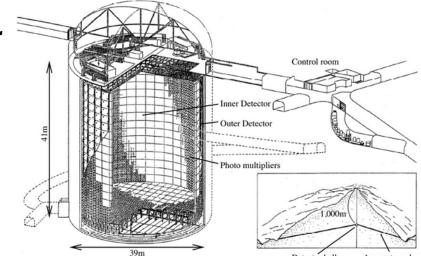
Ring imaging Gd-doped water Cherenkov detector

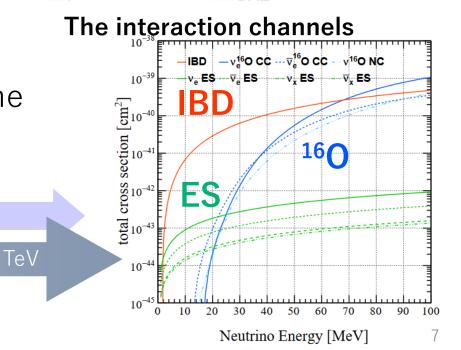
- 49.5k m³ of pure water with 16.2 tons of Gd(0.03 w%)
 - 39 tons of $Gd_2(SO_4)_3 \cdot 8H_2O$
 - ~75% Neutron capture efficiency
- Target volume 32k m³ for SN v

~100

LowE Group SN

Solar v

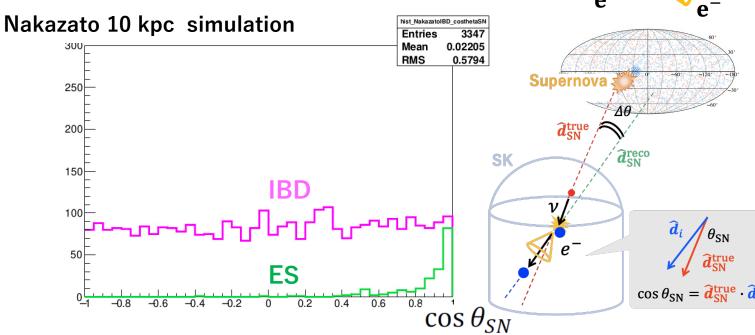

~3.5 MeV ~20


- 11129 50cm PMTs for Inner detector
- 1885 20cm PMTs for outer detector
- 1km (2700 mwe) underground in Kamioka

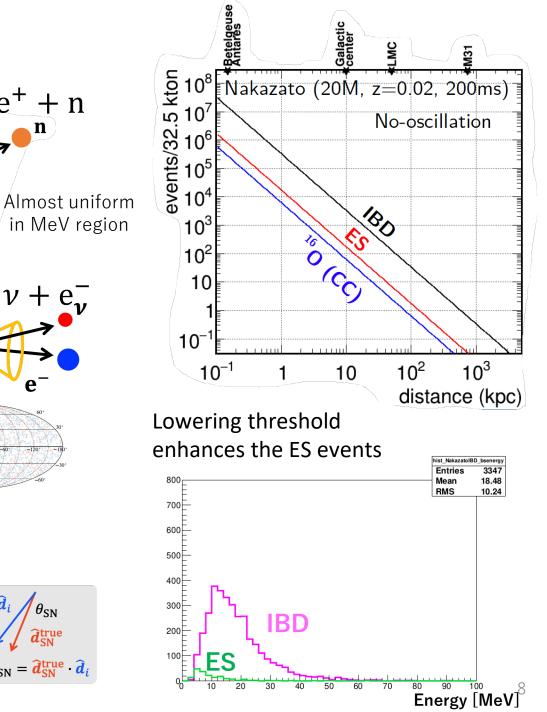
atmpd Group

- Measurable : Energy, neutrino types, and direction
- Most sensitive to \overline{v} through inverse beta decay in the Proton decay low energy region.

~1 GeV

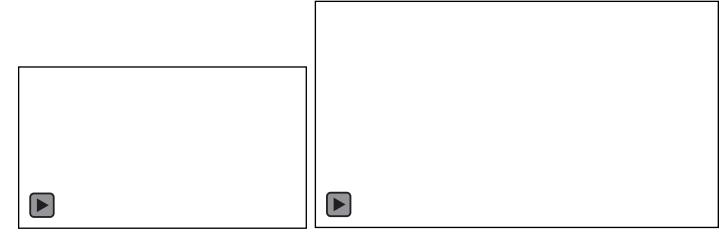

Supernova neutrino in SK $\bar{\nu}_{a} + p \rightarrow e^{+}$

The main channel Inverse Beta Decay reaction (IBD) ~90%

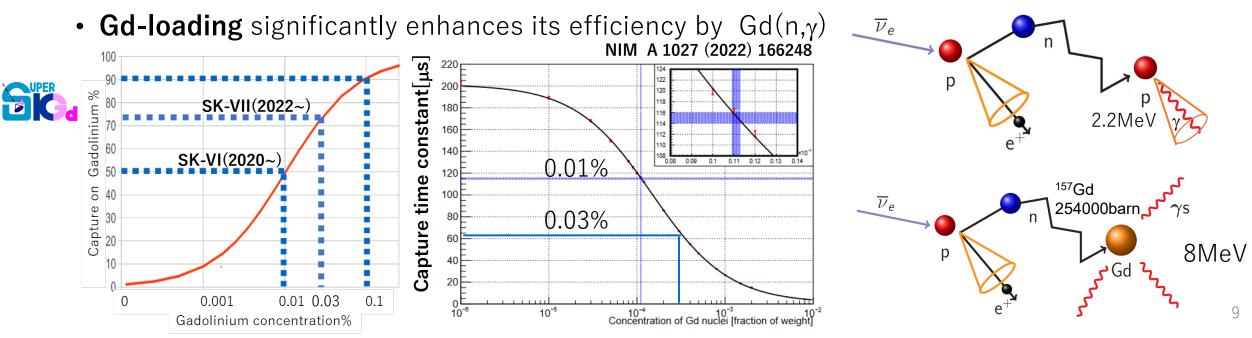

The direction of the positron does not reflect the direction of the neutrino

As the neutrino telescope Elastic Scattering interactions (ES) ~5%

The electron keeps the neutrino direction information.

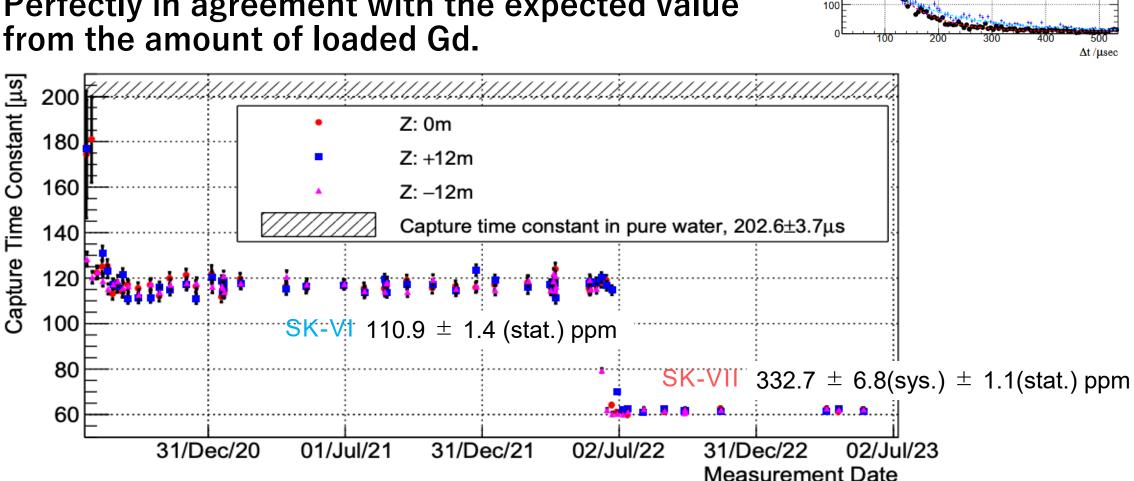


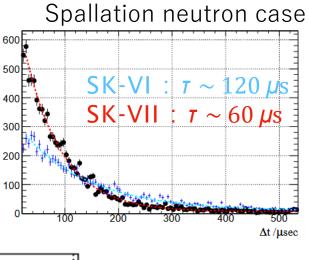
 $\nu + e$


The Gd-loading

Separating ES from IBD allows
improving the SN direction pointing accuracy.
→ Gd enhances the IBS tagging

Neutron tagging for interaction (especially IBD) identification

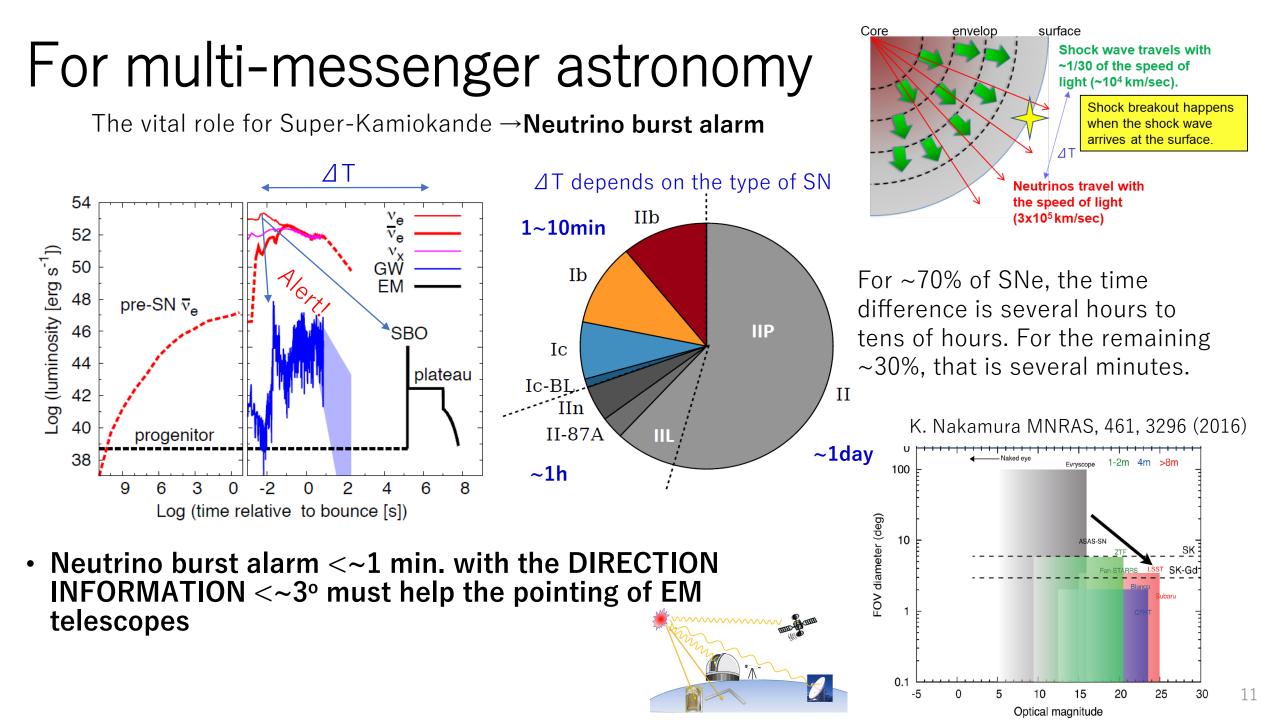

• Originally only by delayed coincidence with 2.2MeV gamma from p-capture



Gd concentration

Measured by neutron capture time (Am/Be source)

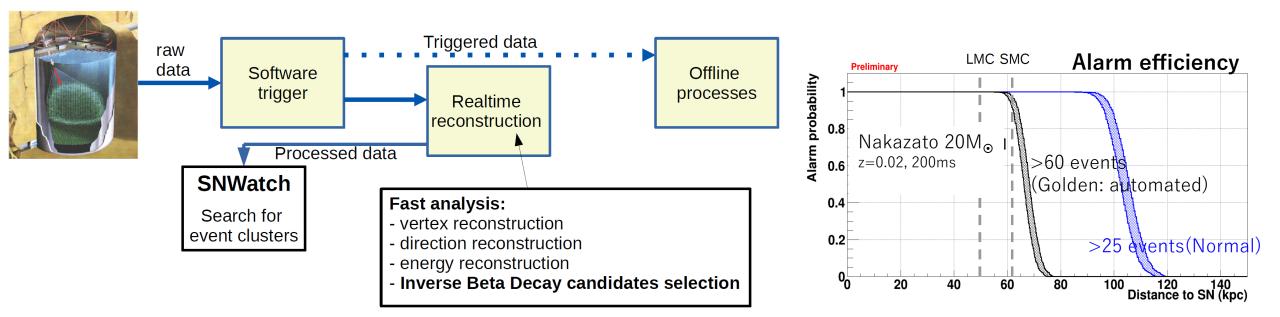
• Perfectly in agreement with the expected value from the amount of loaded Gd.



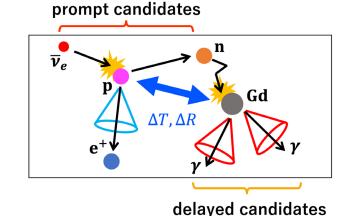
Events /5 µs

400

300

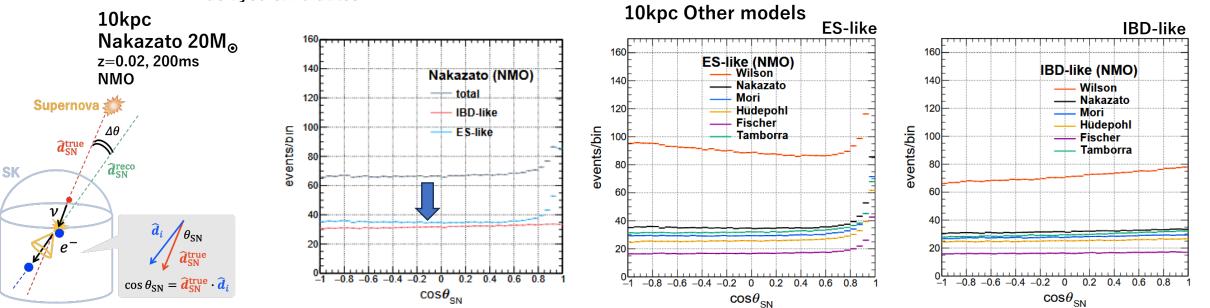

200

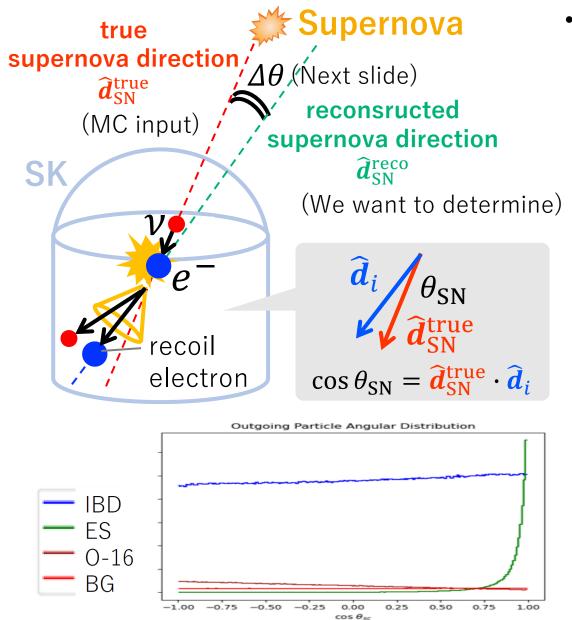
Realtime supernova monitoring of SK

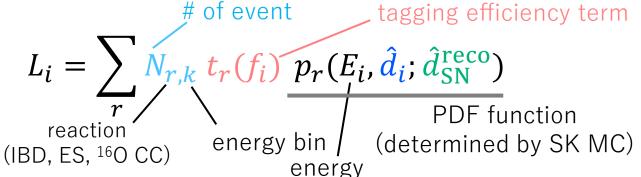

SK's SN monitoring system **"SNWatch**." Astropart. Phys. 81 (2016)

- Quick online analysis code, reconstructing the events and fitting SN direction
- In case the event burst matches the criteria (uniformity of the events in the detector, number of events), an automatic alarm is sent
 - The criteria are determined so that we would have 100% SN detection efficiency at the Large Magellanic Cloud.

Quick IBD tagging implemented in SNwatch

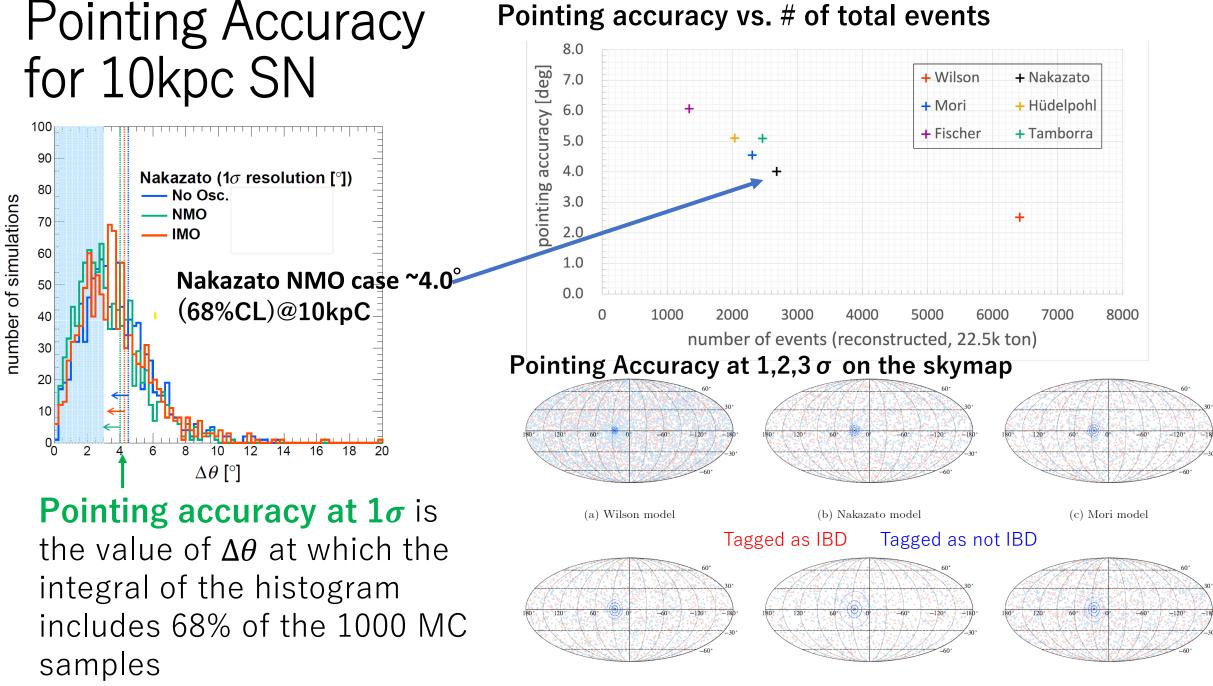

0.03% Gd makes IBD tagging efficient in SN monitoring **Speed-oriented** real-time simple IBD tagging algorithm


(1) Selection of prompt candidates \geq 7MeV ② Selection of delayed candidates ③ Neutron tagging pair of events with $\Delta T < 500 \ \mu s \ \& \Delta R < 300 \ cm$ This selection algorithm tags ~50% IBD events 10kpc Other models **ES-like**


13

Determination of SN direction

- Maximum Likelihood Fit
 - The likelihood function for the *i*-th event


• Likelihood

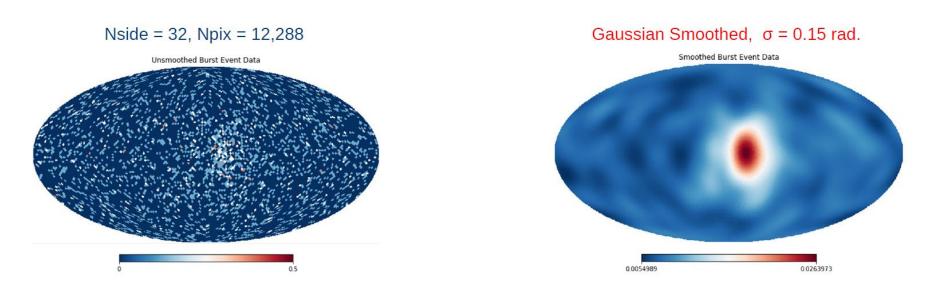
•

$$\mathcal{L} = \exp\left\{\sum_{k,r} N_{r,k}\right\} \prod_{i} L_{i}$$
Maximized by
$$\frac{\partial \mathcal{L}}{\partial \mathcal{L}} = \frac{\partial \mathcal{L}}{\partial \mathcal{L}} = 0$$

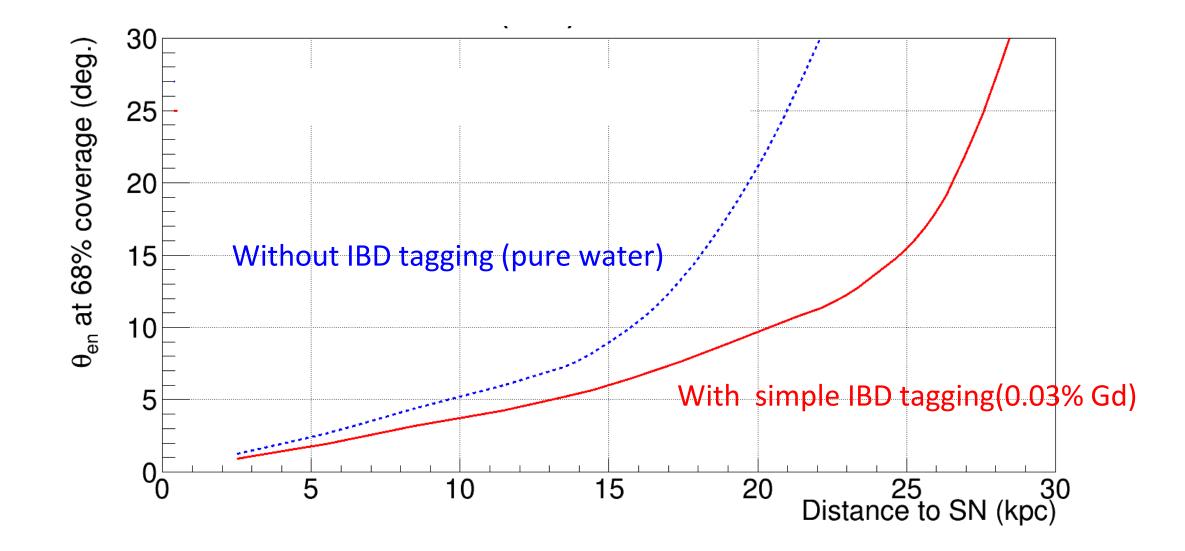
 $\partial N_{r,k} = \partial \hat{d}_{CN}^{reco}$

This is powerful, but the initial grid search and the loop process to get difference between a trial SN direction and each event direction take time... 14

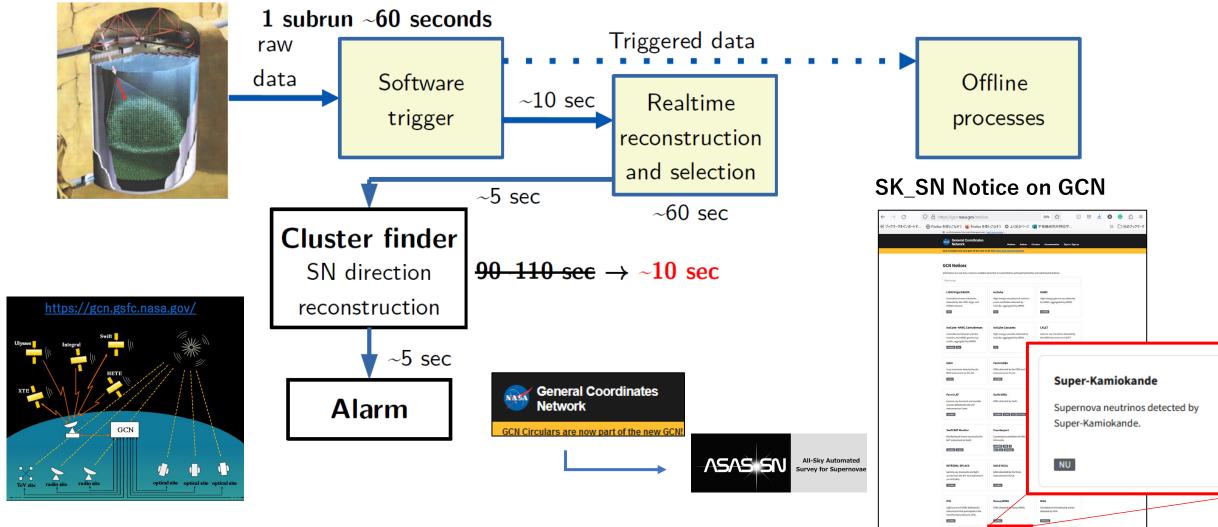
(d) Hüdelpohl model


(e) Fischer model

(f) Tamborra model


15

Upgrading with HealPix direction estimation


- HEALPix-based fitter (Hierarchical Equal Area isoLatitude Pixelation of a sphere):
 - A sphere of the sky is made and divided in pixels of equal area
 - The pixels are populated with the projection of each event's reconstructed direction on the sphere.
 - The sphere is then smoothed with a Gaussian function
 - The pixel with the maximum number of events is then selected as the initial SN direction → Maximum Likelihood fitting

How much improved by 0.03% Gd?

How much is boosted by HealPix?

• Within 2min, SK_SN notice will be sent through GCN Notice

For the next

Make the most of SK

• The number of ¹⁶O interactions in SK is still larger than the number of all interactions in other detectors.

10

5

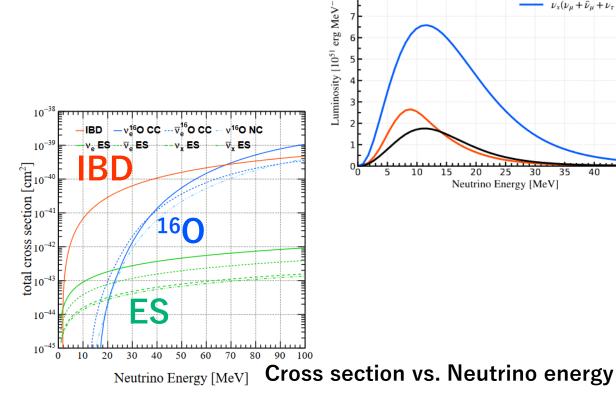
15

20

25

Neutrino Energy [MeV]

30

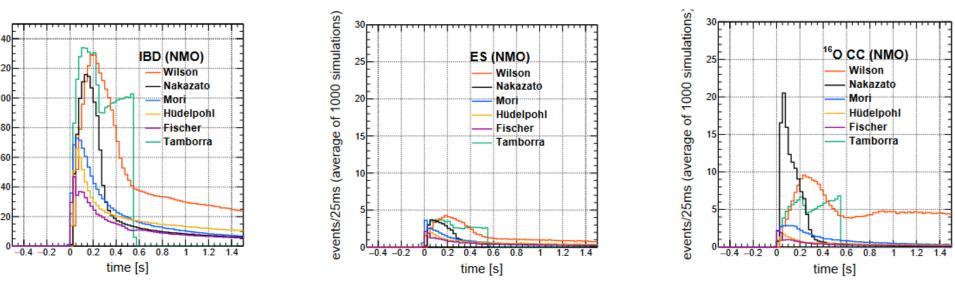

35

40

45

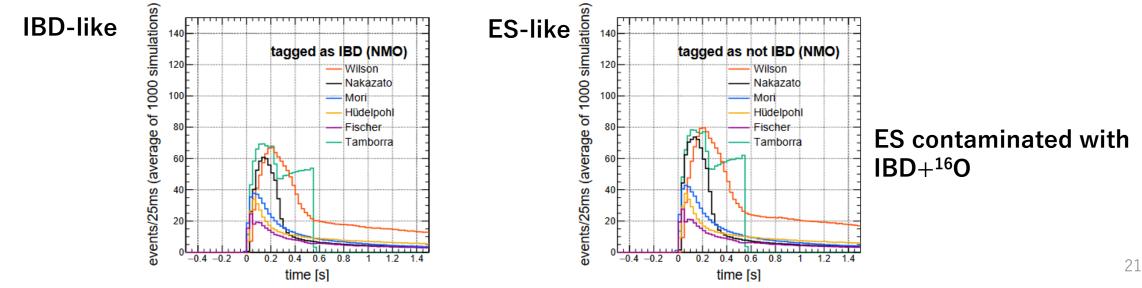
 $+\bar{\nu}_{\mu}+\nu_{\tau}+\bar{\nu}_{\tau})$

Nakazato model neutrino energy 9


Expected number of interactions in SK for 10kpc SN

Generated by	Wilson			Nakazato			Mori		
SKSNSim	No Osc.	NMO	IMO	No Osc.	NMO	IMO	No Osc.	NMO	IMO
	7431	8207		3542			3275	3422	
IBD $(\bar{\nu}_{e})$			9970		3893	4693			3745
ES $(\nu_{\rm e})$	223	231	229	173	172	171	177	148	156
ES $(\bar{\nu}_{e})$	97	97	98	63	66	72	60	61	63
ES (ν_x)	80	79	80	60	60	60	52	57	56
ES $(\bar{\nu}_x)$	69	69	69	52	51	48	45	45	44
$^{16}O CC (\nu_e)$	44	1034	729	48	180	139	8	86	62
¹⁶ O CC $(\bar{\nu}_{e})$	195	329	633	46	68	116	30	42	71
¹⁶ O NC ($\nu_{\rm e}$, ¹⁵ N)	4	89	63	4	15	12	1	8	5
^{16}O NC ($\bar{\nu}_{e}$, ^{15}N)	22	43	89	5	8	16	3	4	8
¹⁶ O NC (ν_x , ¹⁵ N)	177	93	119	31	20	23	15	8	10
^{16}O NC $(\bar{\nu}_x, {}^{15}N)$	177	156	112	31	28	21	15	14	10
^{16}O NC ($\nu_{\rm e}$, ^{15}O)	1	24	17	1	4	3	0	2	1
^{16}O NC ($\bar{\nu}_{e}$, ^{15}O)	6	12	24	1	2	4	1	1	2
^{16}O NC (ν_x , ^{15}O)	48	25	32	9	5	6	4	2	3
${}^{16}O \text{ NC} (\bar{\nu}_x, {}^{15}O)$	48	42	30	8	8	5	4	4	3
total	8622	10530	12294	4074	4580	5389	3690	3904	4239
Generated by	Hüdelpoh	1		Fischer			Tamborra	ι <u> </u>	
SKSNSim	No Osc.	NMO	IMO	No Osc.	NMO	IMO	No Osc.	NMO	IMO
IBD $(\bar{\nu}_{\rm e})$	3048	3052	3049	1884	1990	2242	3830	3487	2718
$\mathrm{ES}~(\nu_{\mathrm{e}})$	146	124	132	90	87	88	135	82	99
$\mathbf{F}\mathbf{C}(\mathbf{z})$									
ES $(\bar{\nu}_{e})$	53	53	53	35	35	37	50	45	35
$ ext{ES} (u_{e}) \\ ext{ES} (u_{x}) \\ ext$	53 43	53 47	$\frac{53}{46}$	35 31		$\frac{37}{31}$	50 28	45 38	
					35				35
$\frac{\text{ES } (\nu_x)}{\text{ES } (\bar{\nu}_x)}$ $\frac{16 \text{O CC } (\nu_e)}{16 \text{O CC } (\nu_e)}$	43	47	46	31	35 31	31	28	38	$35 \\ 35$
$\frac{\text{ES } (\nu_x)}{\text{ES } (\bar{\nu}_x)}$ $\frac{^{16}\text{O CC } (\nu_e)}{^{16}\text{O CC } (\bar{\nu}_e)}$	43 38	47 38	$\frac{46}{38}$	31 27	35 31 26	$\frac{31}{25}$	28 25	38 26	35 35 30
$\frac{\text{ES } (\nu_x)}{\text{ES } (\bar{\nu}_x)}$ $\frac{16 \text{O CC } (\nu_e)}{16 \text{O CC } (\nu_e)}$	43 38 12	47 38 32	46 38 26	31 27 5	35 31 26 27	31 25 21	28 25 55	38 26 90	35 35 30 80
$\frac{\text{ES } (\nu_x)}{\text{ES } (\bar{\nu}_x)}$ $\frac{^{16}\text{O CC } (\nu_e)}{^{16}\text{O CC } (\bar{\nu}_e)}$	43 38 12 30	47 38 32 31	46 38 26 33	31 27 5 15	35 31 26 27 18	31 25 21 27	28 25 55 97	38 26 90 90	35 35 <u>30</u> 80 77
$\frac{\text{ES } (\nu_x)}{\text{ES } (\bar{\nu}_x)}$ $\stackrel{16}{\rightarrow} \text{O CC } (\nu_e)$ $\stackrel{16}{\rightarrow} \text{O CC } (\bar{\nu}_e)$ $\stackrel{16}{\rightarrow} \text{O NC } (\nu_e, {}^{15}\text{N})$	43 38 12 30 1	47 38 32 31 3	46 38 26 33 2	31 27 5 15 0	35 31 26 27 18 2	31 25 21 27 2	28 25 55 97 5	38 26 90 90 8	35 35 30 80 77 7
$\begin{array}{c} \text{ES } (\nu_{x}) \\ \text{ES } (\bar{\nu}_{x}) \\ \end{array} \\ \begin{array}{c} ^{16} \text{O CC } (\nu_{e}) \\ ^{16} \text{O CC } (\bar{\nu}_{e}) \\ \end{array} \\ \begin{array}{c} ^{16} \text{O NC } (\nu_{e}, ^{15} \text{N}) \\ \end{array} \\ \begin{array}{c} ^{16} \text{O NC } (\bar{\nu}_{e}, ^{15} \text{N}) \end{array} \end{array}$	43 38 12 30 1 3	47 38 32 31 3 3 3	46 38 26 33 2 3	31 27 5 15 0 1	35 31 26 27 18 2 2 2	31 25 21 27 2 2 2	28 25 55 97 5 11	38 26 90 90 8 10	35 35 30 80 77 7 8
$\begin{array}{c} \text{ES } (\nu_{x}) \\ \text{ES } (\bar{\nu}_{x}) \\ \end{array}$	43 38 12 30 1 3 6	47 38 32 31 3 3 4	46 38 26 33 2 3 4	31 27 5 15 0 1 5	35 31 26 27 18 2 2 2 3	31 25 21 27 2 2 4	28 25 55 97 5 11 16	38 26 90 90 8 10 13	35 35 30 80 77 7 8 14
$\begin{array}{c} \text{ES } (\nu_x) \\ \text{ES } (\bar{\nu}_x) \\ \end{array}$	43 38 12 30 1 3 6 6 6	47 38 32 31 3 3 4 6	46 38 26 33 2 3 4 6	31 27 5 15 0 1 5 5	35 31 26 27 18 2 2 2 3 4	$31 \\ 25 \\ 21 \\ 27 \\ 2 \\ 2 \\ 4 \\ 4 \\ 4$	28 25 55 97 5 11 16 16	38 26 90 90 8 10 13 17	35 35 30 80 77 7 8 14 19
$\begin{array}{c} \text{ES } (\nu_x) \\ \text{ES } (\bar{\nu}_x) \\ \end{array}$ $ \begin{array}{c} ^{16}\text{O CC } (\nu_e) \\ ^{16}\text{O CC } (\bar{\nu}_e) \\ ^{16}\text{O NC } (\bar{\nu}_e, ^{15}\text{N}) \\ ^{16}\text{O NC } (\bar{\nu}_e, ^{15}\text{N}) \\ ^{16}\text{O NC } (\nu_x, ^{15}\text{N}) \\ ^{16}\text{O NC } (\bar{\nu}_x, ^{15}\text{N}) \\ ^{16}\text{O NC } (\nu_e, ^{15}\text{O}) \end{array}$	43 38 12 30 1 3 6 6 6 0	$ \begin{array}{r} 47\\ 38\\ 32\\ 31\\ 3\\ 4\\ 6\\ 1 \end{array} $	$ \begin{array}{r} 46 \\ 38 \\ 26 \\ 33 \\ 2 \\ 3 \\ 4 \\ 6 \\ 1 \end{array} $	31 27 5 15 0 1 5 5 0	35 31 26 27 18 2 2 2 3 4 1	31 25 21 27 2 2 4 4 4 1	28 25 55 97 5 11 16 16 16 1	38 26 90 90 8 10 13 17 2	35 35 30 80 77 7 8 14 19 2
$\begin{array}{c} \text{ES } (\nu_x) \\ \text{ES } (\bar{\nu}_x) \\ \end{array} \\ \begin{array}{c} ^{16} \text{O CC } (\nu_e) \\ ^{16} \text{O CC } (\bar{\nu}_e) \\ ^{16} \text{O NC } (\bar{\nu}_e, ^{15} \text{N}) \\ ^{16} \text{O NC } (\bar{\nu}_e, ^{15} \text{N}) \\ ^{16} \text{O NC } (\bar{\nu}_x, ^{15} \text{N}) \\ ^{16} \text{O NC } (\bar{\nu}_x, ^{15} \text{N}) \\ ^{16} \text{O NC } (\bar{\nu}_e, ^{15} \text{O}) \\ ^{16} \text{O NC } (\bar{\nu}_e, ^{15} \text{O}) \\ ^{16} \text{O NC } (\bar{\nu}_e, ^{15} \text{O}) \end{array}$	43 38 12 30 1 3 6 6 6 0 1	$ \begin{array}{r} 47 \\ 38 \\ 32 \\ 31 \\ 3 \\ 4 \\ 6 \\ 1 \\ 1 \end{array} $	$ \begin{array}{r} 46 \\ 38 \\ 26 \\ 33 \\ 2 \\ 3 \\ 4 \\ 6 \\ 1 \\ 1 \end{array} $	31 27 5 15 0 1 5 5 0 0 0	35 31 26 27 18 2 2 2 3 4 1 0	31 25 21 27 2 2 4 4 4 1 1	28 25 97 5 11 16 16 1 3	38 26 90 90 8 10 13 17 2 3	35 35 30 80 77 7 8 14 19 2 2

Current limitation

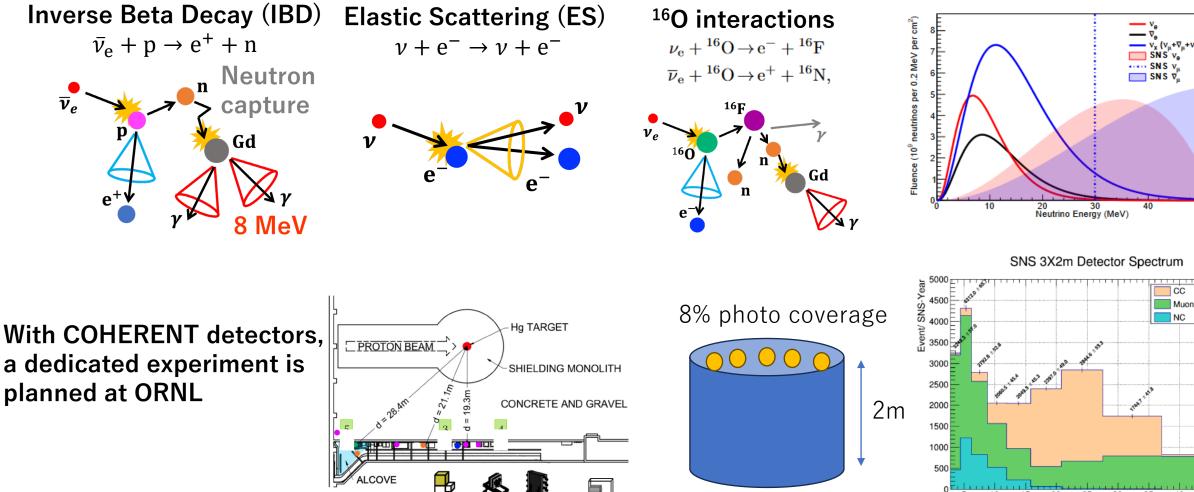

1000 simulations)

events/25ms (average of

True interactions in SK

What currently can be extracted from SK (online analysis)

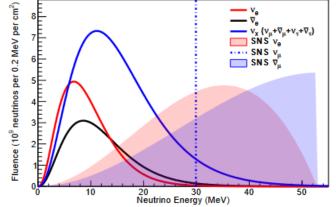
Plans to make use of ¹⁶O channel in SK


• They are more complicated topologies than IBD's and ES's.

SciBath

NSC

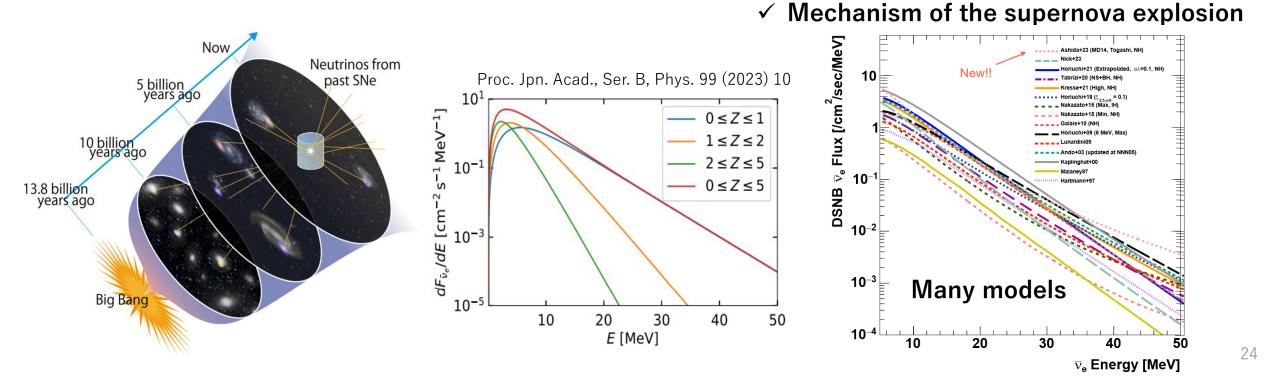
MARS


• All final state particles should be investigated.

Timing Car

2m

ORNL SNS neutrino spectra


Reconstructed Energy (MeV)

Status of DNSB analysis

Diffuse Supernova Neutrino Background Supernova Relic Neutrino $\frac{dF_{\nu}}{dF_{\nu}} = \int_{-\infty}^{2max} E_{\nu} dN_{\nu} (E_{\nu}) dN_{\nu}$

Neutrinos emitted in past supernova explosions and stored in the current universe \rightarrow promising extra-galactic ν

- In the entire universe, several supernova explosions occur every second.
- There must have been $O(10^{18})$ explosions in the history of the universe.

 $R_{SN}(z)$

SN rate at z

✓ History of Star Formation

 dE'_{ν}

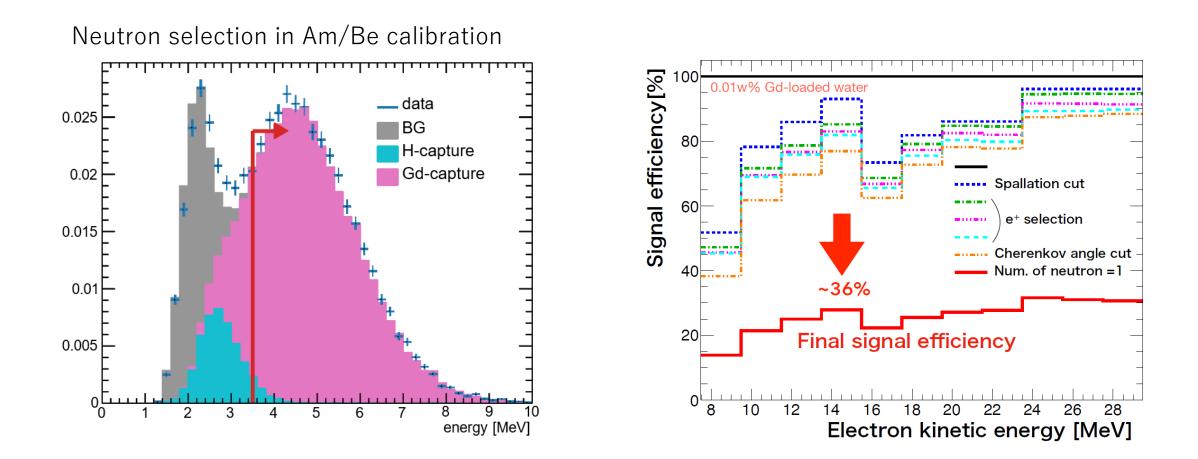
(averaged)

SN spectrum

-=c

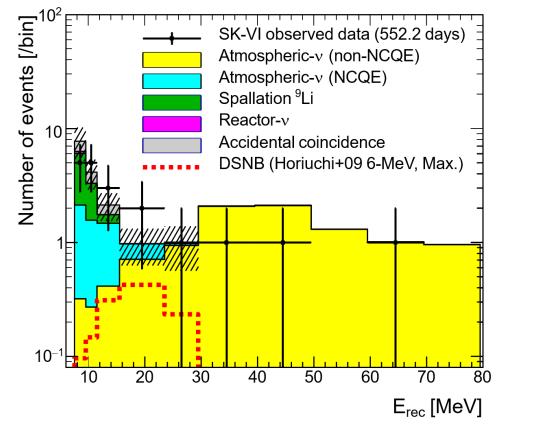
Access to

 J_0

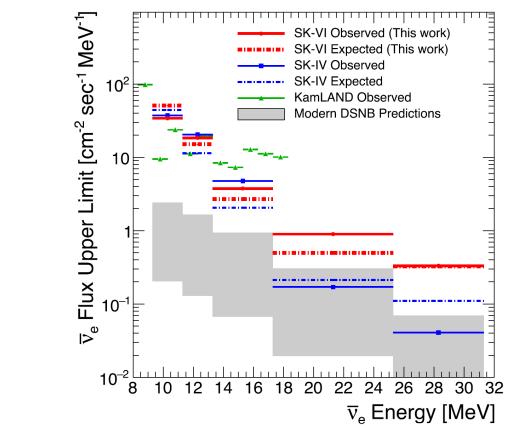

✓ BH formation

 dE_{ν}

Published DSNB search results @0.01%Gd


M. Harada et al., ApJL 951, L27 (2023)

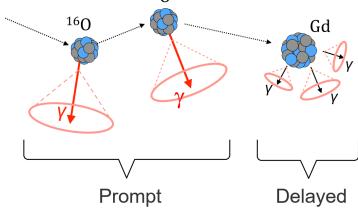
• Neutron detection with cut-based method (Efficiency ~ 35.6%)


Published DSNB search results @0.01%Gd

- SK-VI 552 days data
 - 16 events were observed
 - \rightarrow consistent with background

M. Harada et al., ApJL 951, L27 (2023)

Flux upper limit comparable with the results from pure-water phase which has 5 times of live-time

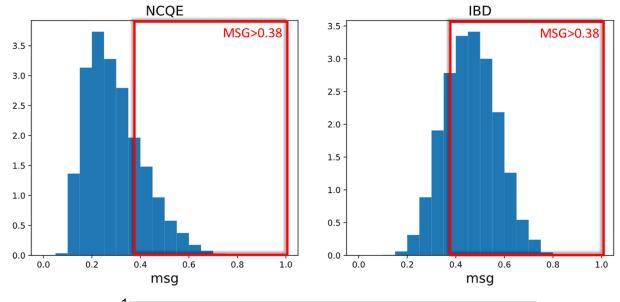


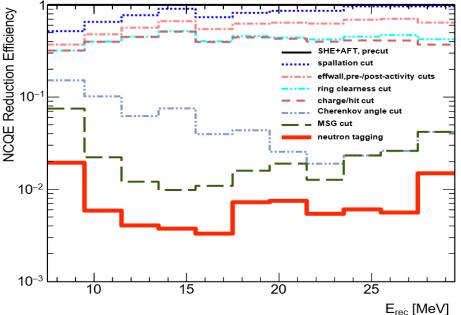
SK-Gd is world's most sensitive for SRN above 13 MeV

Updated DSNB search@0.01%Gd NCQE BG reduction

The most problematic BG

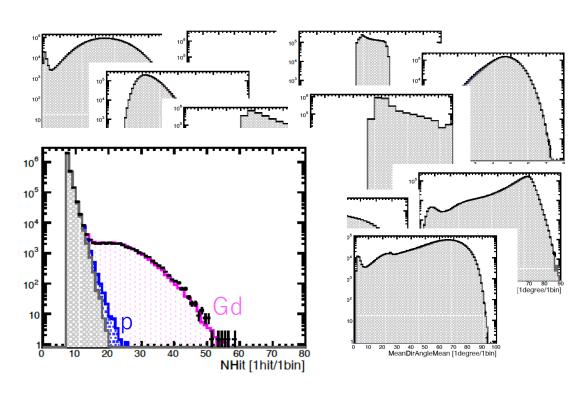
can be reduced if the prompt multiple γs are identified. $$^{16}O$$

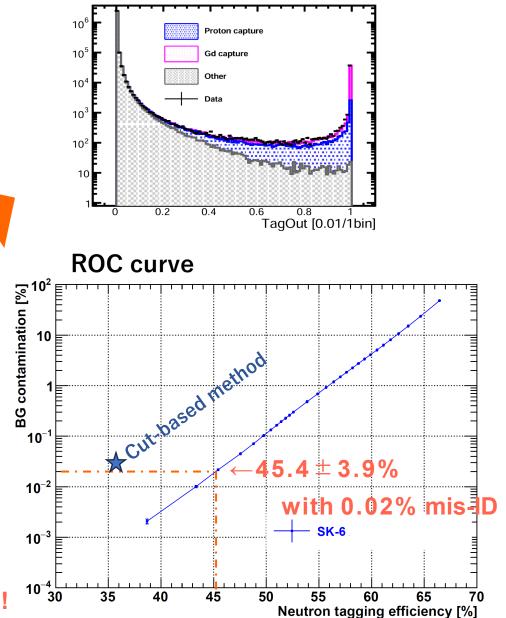



Multiple-scattering goodness (MSG)

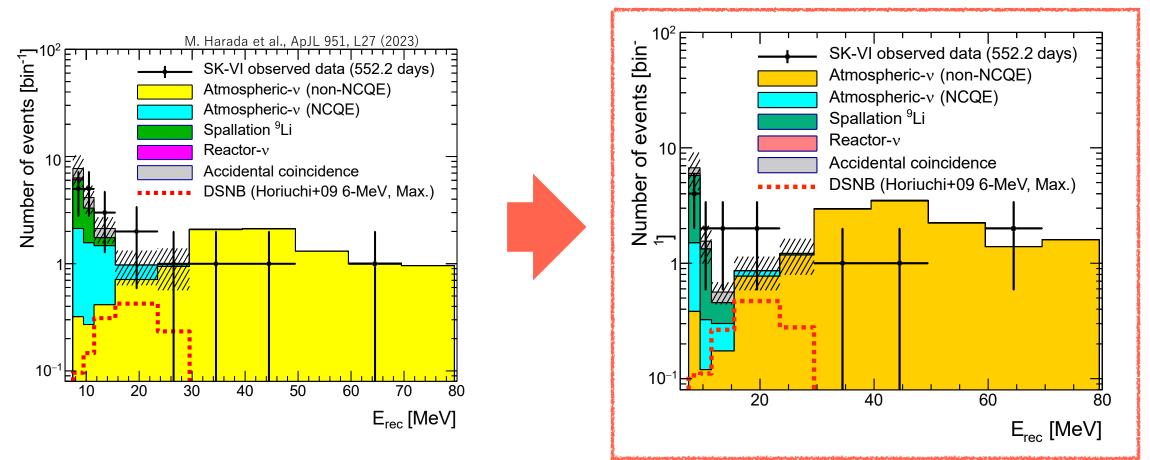
originally for solar v to reject low energy electron scattering BG events Small MSG:

more isotropic hit pattern: more NCQE-like


Large MSG: more forward hit pattern: more IBD-like



Updated DSNB search@0.01%Gd Neutron tagging with NN


- 12 feature input variables
 - Nhit, hit timing, β-parameters,..

1.3 times improvement of Ntag efficiency!

Updated DSNB search@0.01%Gd

- Significantly improved NCQE reduction
- x1.3 better neutron tagging

Flux limit is coming soon!

Stay tuned for SK-Gd's DSNB search results!

DSNB search@0.03%Gd

NN neutron tagging is ready for DSNB analysis

- \checkmark 63.1 ± 1.1% with 0.02% mis-ID \rightarrow Further 1.4 times improvement expected
- BG contamination [%] 1 10 10^{-2} **SK-7** 10^{-3} 10⁻⁴ ∟ 50 55 60 70 80 65 75 85 Neutron tagging efficiency [%]

ROC curve

Preliminary

Summary

- From 2018 to 2024, significant advancements have been made in SK's capability to differentiate between IBD and ES by incorporating Gd.
- The lataset SK-Gd with 0.03% Gd concentration can promptly detect supernova explosions at 10 kpc, providing alerts with an angular resolution as fine as 4 degrees in under 2 minutes.
- Analysis of data obtained with 0.01% Gd concentration has yielded the world's most sensitive search for diffuse supernova neutrino background neutrinos.
- Please stay tuned for the results of the DSNB search at 0.03% Gd concentration.