

UGAP Conference, Tohoku University

LRT@LSC

Carlos Peña Garay

06.03.24

_

.

Canfranc Underground Lab

Experiments running/completed at LSC

ANAIS Experiment

DArT in ArDM

ANAIS experiment: Modulation excluded at 3 sigma. Started last (7th) year of data taking to reach 5 sigma exclusion.

DArT in ArDM: Measurement of ³⁹Ar activation in UAr from Colorado drilling site (⁴⁰Ar). In operation until 2026.

NEXT-White experiment: Finished in 2021. ¹³⁶Xe Gas electroluminescent TPC at 10 bar (3.5 kg). Best Xenon energy resolution (0.9% FWHM, at 2.6 MeV). Electron track reconstruction improves doble beta events (27 factor rejection with 57% efficiency). Neutrinoless double beta decay T_{1/2} > 10²⁴ yr [KamLAND-zen limit is 2.3x10²⁶] at 90%CL.

CROSS demonstrator: Low background dilution refrigerator studying surface beta events in TeO₂ and Li₂¹⁰⁰MoO₄ crystals.

NEXT-W Experiment

CROSS demonstrator

LSC Breaking News

2023 Highlights on experiments @LSC

NEXT-100 experiment: Detector installation completed in 2023. NEXT-HD experiment first steps (see JJ's talk).

GeRysy: New lowest background world record in HPGe gamma screening with µBq/kg sensitivity (led by G. Zuzel). Well-type suited for small samples from NEXT-100, Dark Side, LEGEND-200 components. Completing calibration run.

New ICPMS-QQQ placed in Class ISO5 clean room underground: 2 (20) ppq sensitivity in ²³⁸U(²³²Th). ppb ⁴⁰K. Copper and steel (NEXT-100 and DAMIC), EFCu (DAMIC), Nal crystals (SABRE), Mo samples (RMD).

LRT on COPPER

Ra, Rn and its short-lived progeny

MOTIVATION

Screening of the construction materials for the next generation experiments like NEXT, LEGEND, DarkSide, DAMIC, ...

Develop onsite methods to obtain large amounts of radio-pure copper (NEXT-HD).

Secular equilibrium may not hold, rather a rule than an exception, and ICP-MS may not be sufficient to estimate background.

Each sub-chain assayed separately.

Ultra-sensitive spectrometers to assay ²²⁶Ra

Very limited screening capabilities worldwide at the level of 10 μ Bq/kg or ppt U-equivalent.

Rn long-lived progeny

LOW BACKGROUND MEASUREMENTS LSC SERVICE IN 2019

Name	V [cm3]	M [kg]	FWHM @ 1332 keV [keV]	Integral (40-2700) keV [cts/kg/day]	Tl-208 583.19 keV [cts/kg/day]	Bi-214 609.3 keV [cts/kg/day]	Co-60 1332.5 keV [cts/kg/day]	K-40 1460.8 keV [cts/kg/day]
GeOroel	420	2.26	2.20	141.76	0.68	0.43	0.04	0.07
Asterix	387	2.06	1.93	173.11	0.41	0.74	0.33	0.62
GeAnayet	410	2.22	2.01	569.17	4.46	1.22	0.15	0.72
GeLatuca	410	2.22	1.84	472.80	4.40	1.29	0.23	0.83
GeTobazo	410	2.22	1.99	499.04	4.10	1.03	0.22	0.73
GeAspe	409	2.22	2.06	707.24	4.64	1.06	0.23	0.66

Sensitivity range, assuming secular equilibrium and 10% efficiency:

Best sensitivity in LSC HPGe detectors was 100 μ Bq/kg or 10 ppt U-equivalent (world most-sensitive 10 μ Bq/kg GeMPI-1)

- $^{238}\text{U} \sim 10 100 \text{ ppt}$ HPGe contribution to Gd₂(SO₄)₃ screening ²³²Th ~ 50 - 330 ppt for SK-Gd (part of EGADS)
- 40 K ~ 10 100 ppb

IMPROVING LRT: MAKING OF THE THREE GLORIES

Hall C refurnished as a noise reduced radon free clean room to host three new HPGe, structure with bottom/top plates and lifters/steeper motors, 520 lead bricks (59 of 1-3 Bq/kg, 207 of 4-5 Bq/kg), 40 Cu pieces and 20 PE (5% B) plates.

UHPGe detector delivered in June 2020: GeRysy installation completed in early 2023 (UJ-LSC coll, led by G. Zuzel). Rysy is a mountain in the crest of the High Tatras, lying on the border of Poland and Slovakia. Rysy has three summits.

Two tons of ultra-pure copper were casted for fabrication of the detector cryostat and the most internal layer of the shield. Freshly pulled 400-cm³ HPGe crystal (~2.1 kg, ~100 % rel. efficiency) with SAGe-well geometry (well capacity is 19.7 cm³). Radio-purity of the copper validated by ICPMS, HPGe and ²¹⁰Pb chemical separation: high purity and strong disequilibrium. 2cm removed from all surfaces of forged copper, and remaining cut in smaller pieces: dedicated pieces sent to Canberra.

Low ²¹⁰Pb lead bricks were selected by the detection of low-background beta spectrometry of ²¹⁰Bi. For the production of soldering material, low activity tin (30 mBq/kg) was selected to be melted with archaeological lead in the proportion 60:40.

Isotope	Activity concentration [mBq kg ⁻¹]	Со
238U	< 0.012	< 1 ppt U. 90 % C.
234Th	< 4.2	Upper ²³⁸ U sub-cha
234mPa	< 0.45	Upper ²³⁸ U sub-cha
226Ra	(29 ± 8) ´ 10 ⁻³	(HPGe)
210Pb	14 ± 2	(²¹⁰ Po extraction)
232Th	< 0.004	< 1 ppt Th. 90 % C
228Ra	< 0.027	90 % C.L. (HPGe)
228Th	< 0.041	90 % C.L. (HPGe)
235U	< 0.069	90 % C.L. (HPGe)
40K	< 0.14	90 % C.L. (HPGe)
60Co	(14 ± 4) ´ 10 ⁻³	(HPGe)

Production and characterization of ultra-pure materials for low background applications, Frontiers in Physics (2024), G. Zuzel, T. Mroz, M. Wojcik, J. Perez, S. Stoch, F. Ferella, M. Laubenstein, C. Pena-Garay

mments

L. (ICP-MS)

ain, 90 % C.L. (HPGe)

ain, 90 % C.L. (HPGe)

L. (ICP-MS)

-

LOW RADIOACTIVITY TECHNIQUES

Detector holder, soldering material, gas adsorber, ... selected in cooperation with the manufacturer of the detector. GeRysy I is the **New** lowest background **world record** in HPGe for screening (collaboration UJ-LSC, led by G. Zuzel). GeRysy II and III construction already started: bottom/top plate and lifters/steeper motors installed in Hall C at LSC. GeRysy II and III construction in progress should benefit from GeRysy. Further improvements in HPGe components.

Detector	M _{act} [kg]	V _{cham} [L]	Lab	2023 results Counting rates [cts/yr/kg] in various energy regions / peaks [keV]							
				40 - 2700	609	662	583	1332	1461	2614	
GeRysy	2.27	15	LSC	64 ± 1	74 ± 19	< 27	27 ± 17	< 37	60 ± 16	26 ± 9	
GeMPI	2.21	15	LNGS	66 ± 1	< 30	57 ± 27	< 21	35 ± 8	86 ± 12	18 ± 5	
GATOR	2.20	15	LNGS	$103 \pm 1 \texttt{*}$	99 ± 33	50 ± 17		83 ± 17	83 ± 17	33 ± 16	
GeOroel	2.31	10 ?	LSC	142	190		182	91	66		

First calibration run, completed in the first semester of 2023, showed very low background detector (still hot).

LOW RADIOACTIVITY TECHNIQUES

Detector holder, soldering material, gas adsorber, ... selected in cooperation with the manufacturer of the detector. GeRysy I is the **New** lowest background **world record** in HPGe for screening (collaboration UJ-LSC, led by G. Zuzel). GeRysy II and III construction already started: bottom/top plate and lifters/steeper motors installed in Hall C at LSC. GeRysy II and III construction in progress should benefit from GeRysy. Further improvements in HPGe components.

Detector	M _{act} [kg]	V _{cham} [L]	Lab	2024 results Counting rates [cts/yr/kg] in various energy regions / peaks [keV]						
				40 - 2700	609	662	583	1332	1461	2614
GeRysy	2.27	15	LSC	40 ± 1	7⁄ ± 19	- 1	27 ± 17	1.1	65 ± 16	20±9
GeMPI	2.21	15	LNGS	66 ± 1	< 30	57 ± 27	< 21	35 ± 8	86 ± 12	18 ± 5
GATOR	2.20	15	LNGS	$103 \pm 1 \texttt{*}$	99 ± 33	50 ± 17		83 ± 17	83 ± 17	33 ± 16
GeOroel	2.31	10 ?	LSC	142	190		182	91	66	

New calibration run, first semester of 2024, shows the lowest background world record HPGe screening detector .

IMPROVING ON BEST COMMERCIAL COPPER

Monitor at O(1) ppg sensitivity in U, requires refined chemistry separation and very clean conditions and chemicals. New ICPMS-QQQ with automatic sampling in clean room underground matches PNNL high standards (ppq sensitivity in U) Improved EFCu production: production of copper lids, cryostat components for DAMIC experiment. Production of O(100 kg) copper batches for additive printing (collaboration with LNGS): Multi-purpose EFCu powder

OTHER LRT PROGRAMS

DArT@LSC

- ³⁹Ar Q=565keV and T_{1/2}=269y; 8x10⁻¹⁶ in AAr;1Bq/Kg; 0.7mBq/kg in UAr
- Produced by muon capture on ³⁹K and (α, n)-induced (n,p) reactions on ³⁹K
- ⁴²Ar Q=599keV and T_{1/2}=32.9y (relevant for $0\nu 2\beta$ decay searches (LEGEND) due to the β 's of the daughter isotope ⁴²K, Q=3MeV and T_{1/2}=12h); 7x10⁻²¹ in AAr, 68µBq/Kg
- A lot of interest in the UAr by several experiments:
- Now expression of interest by:
- LEGEND1000 25 tonnes $(2\beta 0v)$
- COHERENT 1 tonne (CEvENS)
- DUNE module 3 or 4 O(10,000) tonnes (dark matter, SNv, 2β0v); see Valencia MoO workshop
- Darkside-LowMass 1 tonne further depleted

HIGH SENSITIVITY ³⁹AR MEASUREMENT REQUIREMENTS

Expected sensitivity to be observed on ³⁹Ar: DF 60,000 (to be compared to 1,400 for UAr measured by DarkSide-50) Status: ArDM equiped with double phase setup and 1-ton argon recovery vessel. Lead belt and PE in place New TPC ready in ArDM vessel. 1 liter cryostat to host UAr ready. Agreement DS-LSC. Start sampling in fall. 2-yrs operation to monitor UAr production in several batches (small production for LEGEND and COHERENT in discussion)

BabyIAXO-D1 - Screening of materials for solar axion searches

X-ray background characterization of materials for future Baby IAXO experiment at DESY.

IAXO-D1 Micromegas prototype (SDD also tested) at LSC since October 2022. Xenon-Neon-isobutane mixture first, replaced by Argon-isobutane in open loop -> 1.7 10⁻⁷ counts/keV/cm²/s (lowest background ever) - baseline technology

HIGH SENSITIVITY MEASUREMENT REQUIREMENTS

CaDEX experiment (JCAP 2023) - 90 [86-110] GHz search for DM axions in a 10 mK dilution fridge (10-19 W/VHz sensitivity) Haloscope - Rectangular cavities designed, including critical coupling (a*10a*50a, a=5/3 mm) - WR10 waveguides Quasi-optical guiding by reflection at several mirrors: 16 horn antenna apertures

LEDKIDs have been designed: free space impedance at W-band, absorption for two orthogonal polarizations Q=60000

Laboratorio Subterráneo Canfranc

Improving LRT

