Nuclear matrix element for double-beta decay within density functional theory

Nobuo Hinohara

University of Tsukuba

Unraveling the History of the Universe and Matter Evolution with Underground Physics (UGAP2024)

Mar. 4, 2024

Nuclear matrix element

nuclear structure theories Agostini et al. Rev. Mod. Phys. 95, 025002 (2023)

EDF: generator coordinate method based on energy density functional IBM: interacting boson model

QRPA: quasiparticle random-phase approximation

NSM: shell model

IMSRG: In-mediums similarity renormalization group

CC: coupled-cluster theory

Abe et al., Phys. Rev. Lett. 130. 051801 (2023)

a factor of 2-3 deviation

Lightest neutrino mass (meV)

Phase space factor: see poster P28(Kanai)

Nuclear density functional theory

Density functional theory (DFT)

- idea developed in electron systems: There exists an energy density functional (E[p]) that gives exact density of the ground state and the energy (Hohenberg and Kohn)
- extension of this idea to nuclear ground state (and excited states)
- □ applicable to all mass region (even neutron matter in neutron star)
- □ EDF is determined phenomenologically by using experimental data (mass, radius, etc)

NME within DFT

correlations beyond DFT(mean field) are important: treated in a perturbative (QRPA) or non-perturbative (GCM) way

neutron-proton pairing (included in QRPA)
shape coexistence/fluctuation (included in GCM)
no DFT calculation including both

Quasiparticle random-phase approximation (QRPA)

transition to the intermediate state is calculated with QRPA correlation correlations are included both in initial/final state and intermediate states

g_{pp} and g_{ph}

- NME is sensitive to g_{pp} (isoscalar neutron-proton pairing strength) and g_{ph} (neutron-proton Gamow-Teller (GT) interaction strength)
- □ Both cannot be determined from ground-state information
- □ Conventionally g_{pp} is fitted to 2vββ half-life for each isotope before computing 0vββ NME → impossible to predict 2vββ half-life
- **□** Globally fitted EDF with g_{pp} and g_{ph} : fitted to β decay half-life and GT resonance energy

Vogel and	Zirnhauer Phys	Rev Lett	57 3148	(1986)
vogei anu	Zimbauer Filys	. INEV. LEIL.	J , J140	(1300)

Mustonen and Engel, Phys. Rev. C 93, 014304 (2016)

Finite amplitude method (FAM)

original QRPA eigenvalue problem

Nakatsukasa et al., Phys. Rev. C **76**, 024318 (2007) Avogadro and Nakatsukasa, Phys. Rev. C **84**, 014314 (2011)

 $\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} X^i \\ Y^i \end{pmatrix} = \Omega_i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} X^i \\ Y^i \end{pmatrix}$

dimension: 10⁵-10⁶ (with axial deformation)

full diagonalization is computationally demanding. model space truncation necessary

finite-amplitude method (iterative solution)

Linear response theory: QRPA under an external field F with a complex energy $\boldsymbol{\omega}$

$$\begin{bmatrix} \begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} - \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{bmatrix} \begin{pmatrix} X(\omega, \hat{F}) \\ Y(\omega, \hat{F}) \end{pmatrix} = - \begin{pmatrix} F^{20} \\ F^{02} \end{pmatrix} \quad (\mbox{external field})$$

D $X(\omega, F)$ and $Y(\omega, F)$ can be computed efficiently without truncation

D FAM solves the linear equation of X and Y by iteration

□ FAM computes AX+BY and B*X+A*Y without computing A and B explicitly

□ it avoids explicit calculation of A and B matrices

Relation between the FAM XY and QRPA XY (eigenvectors)

$$X_{\mu\nu}(\omega,\hat{F}) = -\sum_{i} \left\{ \frac{X_{\mu\nu}^{i}\langle i|\hat{F}|0\rangle}{\Omega_{i}-\omega} + \frac{Y_{\mu\nu}^{i*}\langle 0|\hat{F}|i\rangle}{\Omega_{i}+\omega} \right\} \qquad \qquad Y_{\mu\nu}(\omega,\hat{F}) = -\sum_{i} \left\{ \frac{Y_{\mu\nu}^{i}\langle i|\hat{F}|0\rangle}{\Omega_{i}-\omega} + \frac{X_{\mu\nu}^{i*}\langle 0|\hat{F}|i\rangle}{\Omega_{i}+\omega} \right\}$$

FAM for 2vββ NME

NH and Engel, Phys. Rev. C 105, 044314 (2022)

$$X_{\mu\nu}(\omega,\hat{F}) = -\sum_{i} \left\{ \frac{X_{\mu\nu}^{i}\langle i|\hat{F}|0\rangle}{\Omega_{i}-\omega} + \frac{Y_{\mu\nu}^{i*}\langle 0|\hat{F}|i\rangle}{\Omega_{i}+\omega} \right\} \qquad Y_{\mu\nu}(\omega,\hat{F}) = -\sum_{i} \left\{ \frac{Y_{\mu\nu}^{i}\langle i|\hat{F}|0\rangle}{\Omega_{i}-\omega} + \frac{X_{\mu\nu}^{i*}\langle 0|\hat{F}|i\rangle}{\Omega_{i}+\omega} \right\}$$
$$\mathcal{T}(\omega_{i},\omega_{f}) = \sum_{K} (-1)^{K} \sum_{pn} \left[\frac{\bar{Y}_{pn}^{(f)}(\omega_{f},\hat{F}_{-K}^{\mathrm{GT}-})}{\bar{X}_{pn}^{(i)}(\omega_{i},\hat{F}_{K}^{\mathrm{GT}-})} - \alpha \overline{X}_{pn}^{(f)}(\omega_{f},\hat{F}_{-K}^{\mathrm{GT}-}) \frac{\bar{Y}_{pn}^{(i)}(\omega_{i},\hat{F}_{K}^{\mathrm{GT}-})}{FAM \text{ from final state}} - \alpha \overline{A} FAM \text{ from initial state}$$

(Ybar, Xbar includes part of overlap matrix between initial and final HFB states)

$$M_{\rm GT}^{2\nu} = \left(\frac{1}{2\pi i}\right)^2 \oint_{C_i} d\omega_i \oint_{C_f} d\omega_f \frac{2\mathcal{T}(\omega_i, \omega_f)}{\omega_i - \omega_f}$$

double contour integration initial state: $\sigma \tau$ - external field final state: $\sigma \tau$ - external field (take the backward part) FAM calculation with different ω and F are parallelizable α controls the overlap (α =0 QTDA, α =1 QRPA)

Benchmark calculation with matrix diagonalization

- QTDA overlap for intermediate states
- Mustonen and Engel: 2D coordinate-basis HFB
- FAM: HFBTHO(2D HO basis)
- pairing strength fitted to OES

Dimension and Computational Time

NH and Engel, Phys. Rev. C 105, 044314 (2022)

10 parameter sets (1A,1B,1C,1D,1E,2,3A,3B,4,5) based on SkO' and SV-min two overlap integral (QTDA and QRPA) $g_A = 1.0$ (quenched) 0.25 QTDA overlap Ж **QRPA** overlap exp 0.2 M^{2v} m_ec² 0.15 × 0.1 • 0.05 0 ⁴⁸Ca ⁷⁶Ge ⁸²Se ⁹⁶Zr ¹⁰⁰Mo¹¹⁶Cd ¹²⁸Te ¹³⁰Te ¹³⁶Xe¹⁵⁰Nd ²³⁸U

better agreement with experimental data in heavier nuclei (A \geq 128) parameter dependence and deviation from data is large in lighter nuclei

2vNME from Globally fitted EDF (pnQRPA)

if initial and final states have different deformation

NH and Engel, Phys. Rev. C 105, 044314 (2022)

Globally fitted EDF (including g_{pp}) enables us prediction of $2\nu\beta\beta$ NME

(⁴⁶Ca,⁷⁰Zn,⁸⁰Se,⁸⁶Kr,⁹⁴Zr,⁹⁸Mo,¹⁰⁴Ru,¹¹⁰Pd,¹¹⁴Cd,¹²²Sn,¹²⁴Sn, ¹³⁴Xe,¹⁴²Ce,¹⁴⁶Nd,¹⁴⁸Nd,¹⁵⁴Sm,¹⁶⁰Gd,¹⁷⁰Er,¹⁷⁶Yb,¹⁸⁶W,¹⁹²Os, ¹⁹⁸Pt,²⁰⁴Hg,²²⁶Ra,²³²Th,²⁴⁴Pu,²⁴⁸Cm)

Next talk by Takashi lida (Tsukuba)

In the FAM we need to decompose the decay operator into two one-body operators.

$$2\mathsf{v}\beta\beta(\mathsf{GT}): \qquad \sum_{a} \boldsymbol{\sigma}_{a} \tau_{a}^{-} \cdot \sum_{b} \boldsymbol{\sigma}_{b} \tau_{b}^{-} \qquad \text{operator is separable: three terms (K=0, \pm 1)}$$
$$0\mathsf{v}\beta\beta(\mathsf{GT}): \int dqf(q) \sum_{ab} j_{0}(qr_{ab}) \boldsymbol{\sigma}_{a} \tau_{a}^{-} \cdot \boldsymbol{\sigma}_{b} \tau_{b}^{-} \\ = 4\pi \int dqf(q) \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left[\sum_{a} j_{l}(qr_{a}) Y_{lm}^{*}(\hat{\boldsymbol{r}}_{a}) \boldsymbol{\sigma}_{a} \tau_{a}^{-} \right] \cdot \left[\sum_{a} j_{l}(qr_{b}) Y_{lm}(\hat{\boldsymbol{r}}_{b}) \boldsymbol{\sigma}_{b} \tau_{b}^{-} \right] \\ j_{0}(qr_{ab}) = 4\pi \sum_{l=0}^{\infty} j_{l}(qr_{a}) j_{l}(qr_{b}) \sum_{m=-l}^{l} Y_{lm}^{*}(\hat{\boldsymbol{r}}_{a}) Y_{lm}(\hat{\boldsymbol{r}}_{b}) \qquad r_{ab} = |\boldsymbol{r}_{a} - \boldsymbol{r}_{b}|$$

summations over: momentum q, I,m, and spins large numbers of FAM double integrations necessary

Reduced basis method for nuclear DFT response

We regard complex energy ω as a parameter. Emulator for X and Y at an arbitrary value of ω is

$$X_{\mu\nu}(\omega) = \sum_{k=1}^{n} a_k(\omega) X_{\mu\nu}(\omega_k) + b_k(\omega) Y^*_{\mu\nu}(\omega_k) + c_k(\omega) X^*_{\mu\nu}(\omega_k) + d_k(\omega) Y_{\mu\nu}(\omega_k)$$
$$Y_{\mu\nu}(\omega) = \sum_{k=1}^{n} a_k(\omega) Y_{\mu\nu}(\omega_k) + b_k(\omega) X^*_{\mu\nu}(\omega_k) + c_k(\omega) Y^*_{\mu\nu}(\omega_k) + d_k(\omega) X_{\mu\nu}(\omega_k)$$

 ω_k : energies at training points

NH, Zhang, Engel, in preparation

Test calculation: ²⁴Mg (oblate) isoscalar monopole mode (like-particle QRPA)

training: 11 FAM amplitudes (ω_k =0~10+ i MeV)

	energy(MeV)	$\operatorname{strength}(e^2 \operatorname{fm}^4)$	
QRPA	RBM	QRPA	RBM
1.318	1.318	5.771E-04	4.612E-04
1.373	1.373	1.510E-02	1.515E-02
2.458	2.458	1.781E-01	1.781E-01
2.598	2.598	3.061E-03	3.044E-03
3.667	3.667	5.782E-01	5.782E-01
5.119	5.119	3.740E-04	3.736E-04
7.411	7.411	4.879E-01	4.879E-01
7.890	7.890	8.755E-03	8.823E-02
7.960	7.961	3.295E-02	3.291E-02
8.929	8.929	8.598E-02	8.597 E-02
9.128	9.128	2.342E-03	2.346E-03
10.24	10.25	2.246E-04	2.160E-04

Reduced basis method

Frame et al., Phys. Rev. Lett. **121**, 032501 (2018) Bonilla et al., Phys. Rev. C **106**, 054322 (2022) Drischler et al., Front. Phys. **10**, 1092931 (2023) <u>Talk by Xilin Zhang at TRIUMF workshop (2023)</u>

Ov Fermi transition (Very preliminary)

 ${}^{48}Ca \rightarrow {}^{48}Sc$ by one-body part of the 0v Fermi mode, in a small model space (N_{sh}=5) training: neutrino momentum q = 1.0 fm⁻¹, m = 0

one mixed operator $(L=0) + (L=2)*1.5^2 + (L=4)*1.5^4 + ...$

50 energy points (0 - 98+0.5i MeV, 2 MeV interval) \rightarrow energies are the parameters evaluation at q = 0.2 fm⁻¹, m=0 for each L-operator in 0v Fermi transition

50-100 FAM training calculations may produce the emulator valid for a wide range of L and q

Summary and outlook

Summary

- **D** Systematic calculation of $2\nu\beta\beta$ (QRPA) NME using globally-fitted EDF
- □ All two-quasiparticle excitations within the model space (~250,000) are included
- Different parameter set give similar NME in heavy nuclei
- □ pnQRPA is not good when initial and final deformation are different (and shape coexistence)

Outlook

□ Emulator using reduced basis method for $0v\beta\beta$ NME