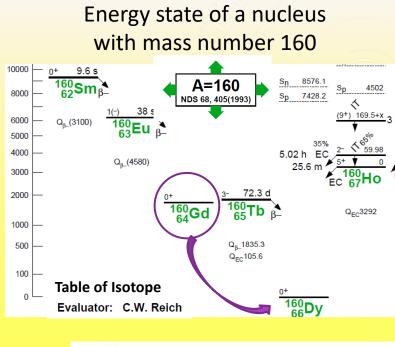
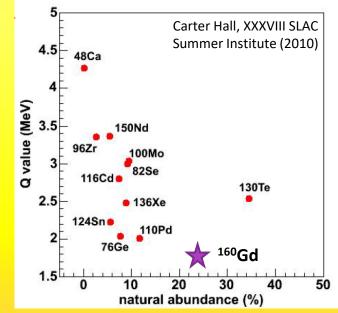
<u>The PIKACHU experiment</u> <u>for the study of 160Gd</u> <u>double beta decay</u>

2024 Mar. 4th (Mon) Takashi Iida (U. of Tsukuba) For the PIKACHU collaboration T. Omori, H. Suzuki, N. Hinohara, M, Yoshino, K. Kamada, Y. Shoji, A. Gando, K. Hosokawa, K. Fushimi, K. Mizukoshi, K. Nakajima

UGAP2024 workshop @Tohoku Univ.


<u>Contents</u>


- 1. Double beta decay of ¹⁶⁰Gd
- 2. The PIKACHU experiment
 - What's PIKACHU?
 - Current status
 - Sensitivity study
- **3. Summary**

Double beta decay of ¹⁶⁰Gd

- Gadolinium (Gd) is a rare earth element lanthanide with atomic number 64 and atomic weight is 157.3.
 - The ¹⁶⁰Gd isotope is one of the double beta-decay candidate nuclei.
 ✓ Q-value : 1730 keV
 - ✓ Natural Abundance : 21.8%

Both 0vββ, 2vββ are undiscovered

Nuclear matrix element (NME) of ¹⁶⁰Gd 2vββ

• Two theoretical models predict $2\nu\beta\beta$ half-lives whose predictions differ by more than an order of magnitude.

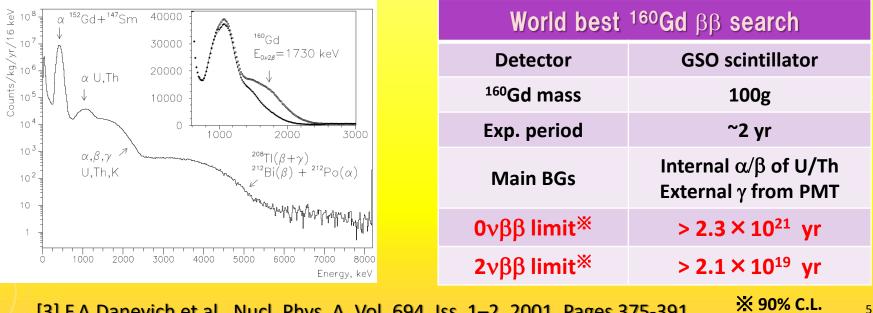
$$T_{1/2}^{2\nu} \sim 6.02 \times 10^{21} \,\mathrm{yr}$$
 [1] (pseudo-SU (3) model)
 $T_{1/2}^{2\nu} \sim 4.7 \times 10^{20} \,\mathrm{yr}^*$ [2] (QRPA model)

* using same phase-space factor as ref. [1]

Theoretical description of the double beta decay of ¹⁶⁰Gd

Jorge G. Hirsch,^{*} Octavio Castaños,[†] and Peter O. Hess[‡] Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70-543 México 04510 D.F. [1] J. G. Hirsch et al., Phys.Rev. C 66, 015502 (2002)

Osvaldo Civitarese[§] Departamento de Física, Universidad Nacional de La Plata, c.c.67; 1900, La Plata, Argentina


> Global calculation of two-neutrino double- β decay within the finite amplitude method in nuclear density functional theory

[2] N. Hinohara et al., Phys. Rev. C 105, 044314 (2022)

Nobuo Hinohara ^{1,2,*} and Jonathan Engel^{3,†} ¹Center for Computational Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan ²Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan ³Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255, USA

Previous research in Ukraine

- The world's best ββ search for ¹⁶⁰Gd is an experiment in Ukraine using a 2-inch GSO scintillator [3].
- α/β -rays from U/Th series impurities in the crystal was a serious background (BG).
- If the sensitivity increased by more than an order of magnitude, sensitivity approaches to predicted half-life of ¹⁶⁰Gd $2\nu\beta\beta$.

[3] F.A.Danevich et al., Nucl. Phys. A, Vol. 694, Iss. 1–2, 2001, Pages 375-391

The PIKACHU experiment

Pure Inorganic scintillator experiment in KAmioka for CHallenging Underground sciences

Double beta decay experiment ¹⁶⁰Gd using Ce:Gd₃Ga₂Al₃O₁₂ (GAGG)

♣ Phase 1 (2024~)

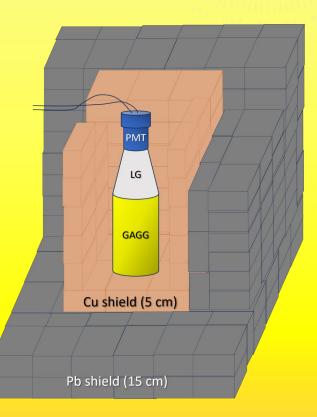
Update $0\nu\beta\beta$ search sensitivity of ¹⁶⁰Gd using large crystals of similar purity as GSO in previous studies.

♦ Phase 2 (2026~?)

Discovery of ¹⁶⁰Gd $2\nu\beta\beta$ using ultra-high purity crystals with an order of magnitude higher purity.

Our strategy to increase sensitivity

- Large crystal: One GAGG crystal includes 3-4 times more ¹⁶⁰Gd than GSO.
- **High LY**: Six times higher light yield enable us better energy resolution.
- **PSD**: α and β can be completely separated by PSD_o
- Low BG tech.: Low radioactivity PMT for DM search etc.
- It is then necessary to remove radioactive impurities of the U/Th series inside the crystals.


$CACC$ averaged pulse (α/β)		Ukraine	PIKACHU
$\underline{GAGG averaged pulse(\alpha/\beta)}$	Detector	GSO scintillator	GAGG scintillator
α β Ξ β Ξ	Amount of ¹⁶⁰ Gd	100 g	700 g(2 crystals)
	LY	10,000 ph./MeV	60,000 ph./MeV
0.004 Beta	Exp. period	2 years	2 years?
0.003 0.002	BG level	Refer [3]	1/10 by PSD
0.001 0 0 100 200 300 400 500 600 700 800 Time [ns]	T _{1/2} limit	$T^{0\nu} > 2.3 \times 10^{21} \text{ y}$ $T^{2\nu} > 2.1 \times 10^{19} \text{ y}$	$0 u\beta\beta$ search ph.1 $2 u\beta\beta$ discovery ph.2

BG study in Kamioka @2021

- BG survey using conventional GAGG was carried out in Kamioka in Jul. 2021.
- The detector module was installed in the Pb/Cu shield in the KamLAND area. Thanks to Inoue-san, Koga-san and Ikeda-san for the cooperation!
 - Shield : Pb 15cm &Cu 5cm thick
 - GAGG : 6.5 cm × 14.5 cmL (3.2 kg)

 ✓ As a result, we found that conventional GAGG crystal contains 10 times more U/Th compared to GSO in Ukraine ⊗⊗⊗

Development of high purity GAGG

The following materials are used for growing large-sized GAGG crystals.

- **1.** Gadolinium oxide (Gd_2O_3) 3.8 kg
- 2. Gallium oxide (Ga_2O_3) 2.0 kg
- 3. Aluminum oxide (Al_2O_3)
- 4. Cerium oxide (CeO_2)

750 g 15 g

Ge detector in Tsukuba and Kamioka were used to investigate radio impurities inside the raw materials.

- ✓ Pure Gd₂O₃ was made in cooperation with Nippon Yttrium (NYC), a company that makes Gd₂(SO₄)₃ for SK-Gd. Purification by resin was carried out (¥50,000/kg).
- ✓ Al_2O_3 is difficult to purify because it is insoluble in acid. Several samples were measured with a Ge detector and the lowest impurity one is selected for use.
- ✓ Ga₂O₃ and CeO₂ were also measured with a Ge detector, but these raw materials were sufficiently high purity.

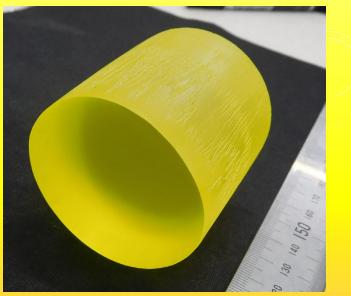
Summary of raw material purification

[mBq/kg]

	Gd ₂ O ₃		Al ₂ O ₃	
	High-purity	Original	High-purity	Original
²³⁸ U	< 16.3	1750 ± 221	< 28.3	476 ± 44
²³⁵ U	< 10.0	130 ± 40	< 7.82	< 21.1
²³² Th	1.66 ± 0.41	270 ± 12	5.85 ± 2.80	16.0 ± 6.6
⁴⁰ K	< 2.70	84.8± 28.7	< 36.58	< 96.48

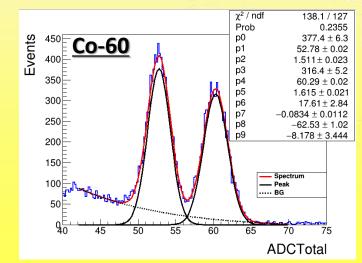
	Ga ₂ O ₃	CeO ₂
²³⁸ U	< 69.2	< 59.0
²³⁵ U	< 8.54	< 15.5
²³² Th	< 10.8	4.4 ± 1.9
⁴⁰ K	< 35.8	< 23.5

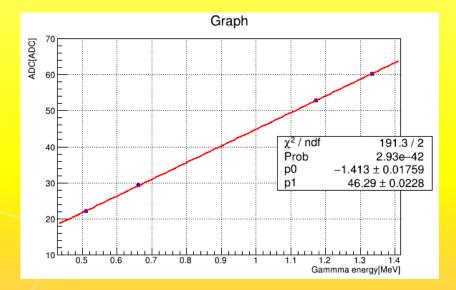
- ²³⁸U, most important BG in PIKACHU, was significantly reduced by purification of Gd₂O₃ and selection of Al₂O₃.
- For Ga₂O₃ and CeO₂, original materials were enough pure.

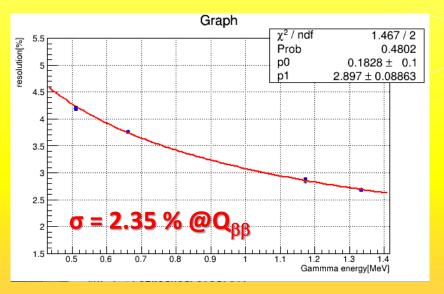

 The purification process reduced the ²³⁸U impurity by more than two orders of magnitude!!

High purity GAGG crystal for PIKACHU

- Using high purity raw materials obtained by purification and selection, GAGG crystals of 2-inch size were grown at Tohoku University.
- The crystals were cut and polished, and the detector was fabricated by winding a reflective sheet and coupling it with a PMT and light guide.

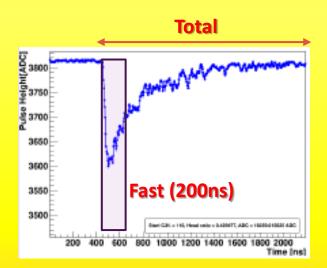




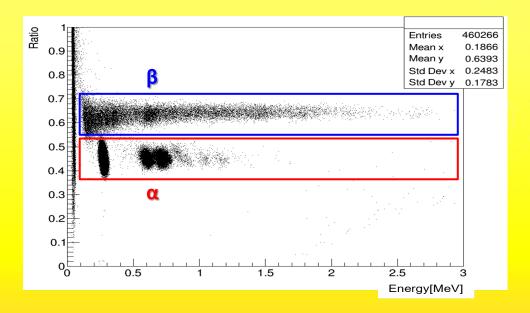

Energy calibration

- Data acquisition with three gamma-ray sources
- Fit γ-ray peak (exp + gaus)

Source	γ Energy	
Cs-137	662 keV	
Na-22	511 keV	
Co-60	1173 keV	
	1333 keV	



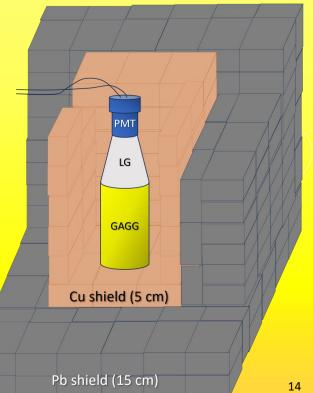
PSD capability of high-purity GAGG


• Pulse shape discrimination method (PSD) is Important for removing BGs.

BG measurements carried out in Tsukuba and evaluate the PSD performance of high purity GAGG.

Ratio = Fast (200ns) / Total

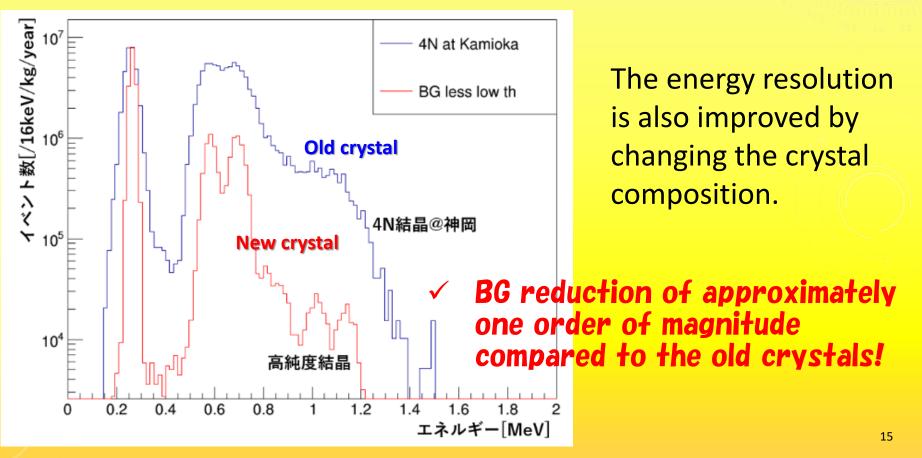
 $\checkmark \beta/\alpha$ are completely distinguishable above 300 keV !!


BG study in Kamioka 2023

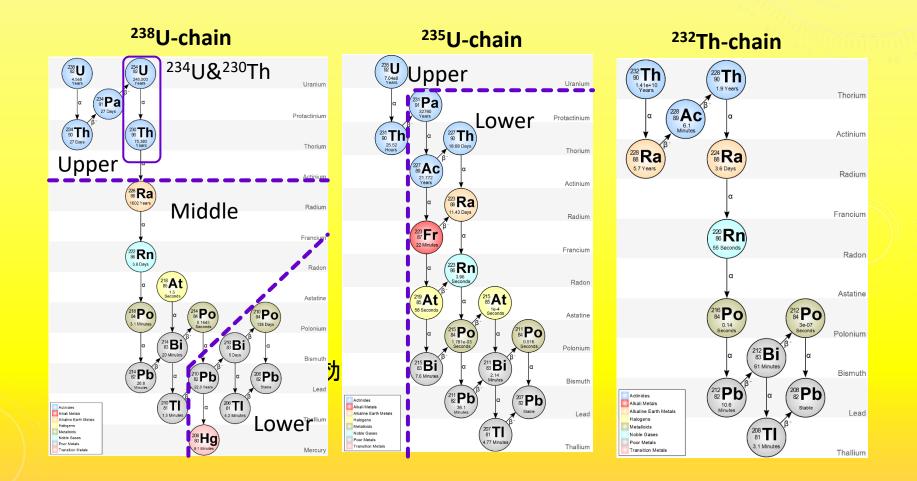
- A BG survey of high-purity GAGG crystals was carried out in a low-BG environment 1000 m underground in Kamioka.
- BG estimation and sensitivity study for PIKACHU phase 1. •

Date: 2023 6/12~6/14

✓ Shield : Pb 15cm & Cu 5cm thick \checkmark HP-GAGG : 5.4 cm ϕ × 5.2 cmL (0.8 kg)

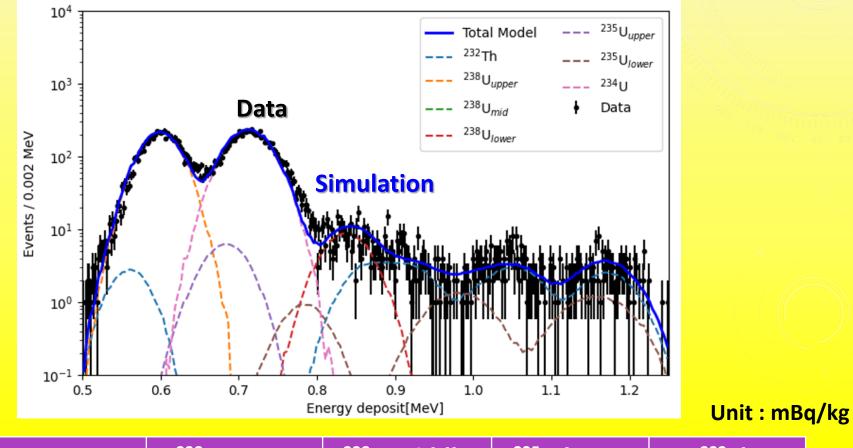


BG level compared with old crystal



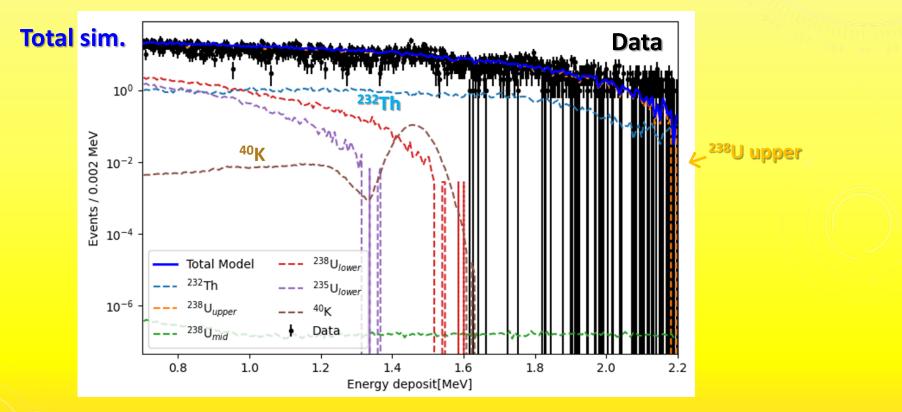
- The radioactive BG levels inside the crystals were estimated from the α-ray rates.
- <u>The α -ray spectra selected by PSD</u>

BG modelling with GEANT4


- In order do understand BGs quantitatively, GEANT4 simulation was used.
- Assuming radiative equilibrium below the long-lived ($T_{1/2} > 10$ yr) nucleus, BG energy spectra for ²³⁸U, ²³⁵U and ²³²Th were simulated.

Understanding α -ray BG by fitting

• Fitting α spectrum (selected by PSD) with the simulated BG spectra.



	²³⁸ U upper	²³⁸ U middle	²³⁵ U lower	²³² Th
Old GAGG	911±10	16.5 ± 3.5	73.5±15.3	64.3±3.0
HP GAGG	125±2	< 0.3	3.2 ± 0.7	2.2 ± 0.2

<u>β-ray BG in high-purity GAGG</u>

 \checkmark Data: β-ray events were extracted from Kamioka data using PSD.

✓ Simulation: two β-ray BG models
 U/Th decay series in crystal ⇒ Fixed impurity content from α-ray fitting results
 ⁴⁰K of PMT origins ⇒ Spectra generated by Geant4 and fitted

✓ The BG spectrum was successfully reproduced by Geant4!!
⇒ The dominant BG is upstream of ²³⁸U around the Q value (1.73 MeV)

18

Sensitivity study for PIKACHU Phase 1

We estimate the sensitivity for $0\nu\beta\beta$ search in PIKACHU Phase 1.

$$T_{1/2}^{0\nu} = (\ln 2)N_a \frac{a}{A} \epsilon \sqrt{\frac{M \cdot t}{BG \cdot \Delta E}}$$

Na: Avogadro number, A: Atomic mass, ε : Efficiency, a: Natural abundance, M: Mass of target nuclei, t: Live time, BG• Δ E: Background rate in Q_{ββ} region

✓ Assuming 2 large crystals (6.4kg), HP-GAGG BG rate and 100% eff.

PIKACHU sensitivity = 4.4×10^{21} years cf. T^{0v} > 1.3×10^{21} years in GSO experiment

- Experiment will start this year with large high-purity GAGG crystals!
- ✓ A further reduction of BG by more than one order of magnitude is needed to search for $2\nu\beta\beta$ of ¹⁶⁰Gd in Phase 2.

First paper of PIKACHU

JOURNAL ARTICLE ACCEPTED MANUSCRIPT

First Study of the PIKACHU Project: Development and Evaluation of High-Purity Gd₃Ga₃Al₂O₁₂:Ce Crystals for ¹⁶⁰Gd Double Beta Decay Search ³

Takumi Omori, Takashi Iida ख़, Azusa Gando, Keishi Hosokawa, Kei Kamada, Keita Mizukoshi, Yasuhiro Shoji, Masao Yoshino, Ken-Ichi Fushimi, Hisanori Suzuki ... Show more

Progress of Theoretical and Experimental Physics, ptae026, https://doi.org/10.1093/ptep/ptae026 Published: 15 February 2024

Latest Issue Volume 2024, Issue 2 February 2024 Impact Factor 8.3 Physics, Multidisciplinary 10 out of 85 Physics, Particles & Fields 4 out of 29


Editor-in-Chief Prof. C.S. Lim

Editorial Board

Further purification of GAGG for Phase 2

- The crystal raw materials are of higher purity than the crystals, which suggests that U/Th impurities were contaminated during the crystal growing process.
- The insulator made from ZrO₂ is contaminated by U/Th impurities.
- New crystals are currently being grown, while devising ways to prevent contamination from insulation.

<u>Comparison of U/Th impurities</u>			
	²³⁸ U	²³² Th	
Original GAGG	911±10	289 ± 20	
HP-GAGG	125±2	10.2 ± 0.4	
Gd ₂ O ₃ raw material	< 16.3	1.66 ± 0.41	
		[mBq/kg]	

Future prospect

- PIKACHU experiment Phase 1 will start in 2024.
- ¹⁶⁰Gd $0\nu\beta\beta$ search sensitivity will be updated in two years.
- In parallel with Phase 1 PIKACHU, we develop ultra-highpurity GAGG crystal, whose purity is one more order of magnitude better than current HP-GAGG.
- Start Phase 2 PIKACHU after 2026 with a few tens of UHP-GAGG for the first detection of ¹⁶⁰Gd $2\nu\beta\beta$.

We aim to detect ¹⁶⁰Gd $2\nu\beta\beta$ in about 5 years!

- Double beta decay search (PIKACHU) experiment for ¹⁶⁰Gd.
- Aiming to increase sensitivity by one order of magnitude over previous studies, to discover 2vββ.

- ✓ Development of high-purity GAGG crystals!! BG~1/10 is achieved.
- ✓ Sensitivity of PIKACHU Phase 1 will be higher than that of the previous study .

New collaborator is always welcome!!

→ tiida@hep.px.tsukuba.ac.jp