

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Direction sensitive dark matter search with nuclear emulsions

Tatsuhiro NAKA Toho University (KMI, Nagoya Univ.) on behalf of NEWSdm collaboration

Advantage of Directionality for dark matter detection

- More reliable evidence for dark matter with distribution model in the halo
- Background discrimination for isotropic component and/or different distribution

Galactic excess e.g., cosmic-ray boosted DM, dark particle by annihilation or decay

Keiko I. Nagao et al JCAP07(2023)061

Direction Sensitivity for solid detector

Carbon Nanotube used to create Nantero's NRAM' 50 times stronger than steel 1/50,000th the diameter of a human hair

Carbon nano tube

[Requirement]

- Super high resolution
- Intrinsic structure and response depending on the track direction with nm scale
- Scalability and low-background

NEWSdm experiment

Direction Sensitive Dark Matter Search with Super-high resolution nuclear emulsion

Super-resolution nuclear emulsion and sub-micron tracking

Super fine-grained nuclear emulsion [Nano Imaging Tracker : NIT]

TN et al., NIM A Nucl. Inst. Meth. A 718 (2013) 519-521 T. Asada, TN et al., , PTEP (2017)063H01

Density : 3.1 ± 0.1 g/cm3 Tunable Crystal size : > 20 nm

Current standard type : 70 +- 10 nm Sensitization : Halogen-Accepter (HA) with Na₂SO₃

Dark matter sensitivity potential

PTEP, 2017 10, 103H01

Readout System

T. Shiraishi, TN *et al.*, PTEP, 4, 043H01 (2021)
A. Umemoto, TN *et al.*, PTEP 10, 103H02 (2020)
Y. Katsuragawa, TN *et al.*, JINST 12(2017)T04002
M. Kimura and TN, Nucl. Inst. and Meth. A 680 (2012)

Readout System

PTS-2 @ Kanagawa U.

PTS-3 @ Nagoya

PTS-4 @ Toho

PTS-5 @ Nagoya

from pilot machine)

(100 times improved

~ 1.2 kg/year/machine

PTEP 2021 (2021) 4, 043H01

+ CNN selection (on going)

Direction sensitivity checks

■ Ion-implantation

Nuclear recoil detection by neutron

- Neutron source due to nuclear fission reaction at AIST is very useful calibration source for directly detection of nuclear recoil, not only ion-implantation system.
- Detection of nuclear recoil tracks are demonstrated
- The performance for any experiment condition such as temperature, device sensitivity control etc. is investigated.

First demonstration of solid tracking detector and directly tracking analysis
 Directional search around 10 GeV/c² region is first in the world

Underground activities at LNGS

Hall F:

- Device self-production with clean room (ISO class.6)
- Device handling and chemical treatment

Hall C :

• Exposure area with shield and device cooling system

Technical run at Hall.C

[Intrinsic radioactivity in the device]

	Activity [mBq/kg]
U-238	42
Th-232	7-21
K-40	40-130
Ag-108m	50
C-14	24000

Temperature dependence for electron efficiency

- Low-temperature operation to keep the emulsion stability
- Electron background rejection using temperature dependence of sensitivity for the energy deposition

	Flux @ underground	Event rate for current selection condition [/kg/day] outside the shield	Event rate for current selection condition [/kg/day] w/ shield
μ	~10 ⁻⁸ /cm²/s	< 1 x 10 ⁻²	< 1 x 10 ⁻²
Environment γ-ray	0.38 /cm²/s	~ 1.8 x 10⁵	< 100
C-14 (intrinsic)		~100	~100
Neutron	~10 ⁻⁶ /cm²/s	< 0.1	< 10 ⁻³

Underground BG run status

No observation with time dependent signal Event rate < 1510 events/kg/day (95% clare

High background contamination (unlikely electron BG)

⇒ miss reconstructed α -ray BG contaminated and emitted in the wet-condition are suspected.

Current activities for lower BG condition and telescope run

On going the BG investigation in the Rn free clean room at Hall.C

Operation temperature : -15°C Shield condition : 2cm Pb Total exposure : ~ 0.1 kg•day

Data taking is on going

Environmental Neutron Measurement @LNGS

202	Nano Imaging Tracker (NIT)	Thermal & 100 keV –	Good	Good	Good	./
6	Proton-recoil Proportional Counter	10keV – 2MeV	Bad	Good	None	
	BF ₃ , ³ He Proportional Counter	Thermal – 20MeV	Good	None	None	
	Liquid Scintillator	1MeV – 100MeV	Bad	Good	None	

Calibration with Monochromatic Sub-MeV Neutron

 ✓ Detected recoil protons are almost good agreement with kinematical expectation

2024/3/5

Event Classification

- External α-rays are excluded by fiducial volume cut, then events are topologically classified to Singleprong and Multi-prong
- Focused on sub-MeV region (2~14µm → 0.25~1MeV) of Single-prong event to analyze with background free

Demonstration of directional neutron measurement with sub-MeV scale

	Sample 1	Sample 2		
Surrounding environment	Portable freezer box (outdoor)			
Altitude	1400 m			
Expected angle-integrated				
flux of atmospheric				
neutron in $0.25 - 10 \text{ MeV}$	$9.0 \times 10^{-3} \text{ cm}^{-2} \text{ s}^{-1}$			
(assumed water fraction				
in ground as $20\%)^{12}$				
Operation temperature	−20 °C			
Run start date	24 Nov. 2021			
Preparation time in	9	0		
underground (days)	2	2		
Exposure time (days)	2	29		
Installation direction	Horizontal			
Analyzed area (cm ²)	46.7	99.4		
Analyzed mass (g)	0.67	1.40		

\$ (°)

Х

Number of Events [Flux in 0.25 ~ 10 MeV] Data : 11.1 ± 2.5 event/g/day \Rightarrow (7.4 \pm 1.7) x 10⁻³ cm⁻² s⁻¹ Phys. Rev. C 107, 014608 (2023)

Underground Neutron measurement

~0.04 kg • day analyzed in the ~0.9 kg • day exposure device

Mask $cos\theta z < 0.05$ && range < 3 μ m

Backgrounds from α-ray before drying process of emulsion plate are expected. ⇒ To be investigated more. Current underground neutron flux upper limit www.example.com www.example.com www.example.com www.example.com www.example.com"/>www.example.com www.example.com"/>www.example.com www.example.com"/>www.example.com www.example.com"/>www.example.com www.example.com"/>www.example.com www.example.com"/>www.example.com a www.example.com"/>www.example.com www.example.com www.example.com"/>www.example.com www.example.com"/>www.example.com www.example.com"/>www.example.com www.example.com <a href

Further exposure run is on going.

DM physics using low-energy (< 1MeV) proton recoil

Expected sensitivity limit for emitted dark particle – nucleon cross section from GC

- The run with 1kg day exposure are on going as neutron measurement (but not used the telescope yet).
- \Rightarrow Scanning will be started from next month.
- Further scale up experiment with telescope is now on preparing.
- Theoretical discussion is also on going, such as any specific particle physics model, validity for cosmology.

Conclusion

- Directional sensitive search for dark matter is important methodology for identification of dark matter behavior in the MW halo.
- Fine-grained nuclear emulsion is implementable tracking detector with capability of detecting nano-scale nuclear recoil tracks.
- Directional search with telescope on the surface lab. was demonstrated, and directional search around 10 GeV/c² mass range was carried out.
- NEWSdm experiment is on going at underground lab. of LNGS.
- Telescope run in underground have been started, and data taking is on-going.
- In parallel, direction sensitive neutron measurement around sub-MeV energy range is on-going.
 - \Rightarrow surface run was done
 - \Rightarrow underground run is on going (now is no background for > 1µm proton signal)
- New parameter space search for MeV scale dark sector using proton recoil is also on-going.