Measuring Artificial Supernova Neutrinos in Neutrino Alley

Kate Scholberg, Duke University

Unraveling the History of the Universe and Matter Evolution with Underground Physics Sendai, Japan March 6, 2024

Neutrinos from core-collapse supernovae

When a star's core collapses, ~99% of the gravitational binding energy of the proto-nstar goes into v's of *all flavors* with ~tens-of-MeV energies

(Energy *can* escape via v's)

Mostly v-vbar pairs from proto-nstar cooling

Timescale: *prompt* after core collapse, overall ∆t~10's of seconds

The Steady State Neutrino Spectrum @ Earth

Grand Unified Neutrino Spectrum at Earth Edoardo Vitagliano, Irene Tamborra, Georg Raffelt. Oct 25, 2019. 54 pp. MPP-2019-205 e-Print: arXiv:1910.11878 [astro-ph.HE] | PDF

During a ~10s Galactic burst, SN flux can increase 9-10 orders of magnitude

Grand Unified Neutrino Spectrum at Earth Edoardo Vitagliano, Irene Tamborra, Georg Raffelt. Oct 25, 2019. 54 pp. MPP-2019-205 e-Print: <u>arXiv:1910.11878</u> [astro-ph.HE] I <u>PDF</u>

Expected neutrino luminosity and average energy vs time

Vast information in the *flavor-energy-time profile*

Fischer et al., Astron.Astrophys. 517 (2010). arXiv:0908.1871: 'Basel' model

Visible supernova may not show up for hours or days

Fluxes as a function of time and energy

Neutrinos per cm² per bin (per ms per 0.5 MeV)

Huedepohl et al. model

Another example of a model

black hole formation!

Model by L. Huedepohl

What can we learn from the next neutrino burst?

CORE COLLAPSE PHYSICS

explosion mechanism proto nstar cooling, quark matter black hole formation accretion, SASI **nucleosynthesis**

input from

observations

multimessenger

from flavor, energy, time structure of burst input from neutrino experiments

$v_e \rightarrow v_\mu$

NEUTRINO and OTHER PARTICLE PHYSICS

 v absolute mass (not competitive)
 v mixing from spectra: flavor conversion in SN/Earth (mass hierarchy)
 other v properties: sterile v's, magnetic moment,...
 axions, extra dimensions, FCNC, ...

+ EARLY ALERT

Supernova neutrino detector types

Summary of supernova neutrino detectors

Extragalactic Galactic sensitivi	Super	
	LVD	
	KamLA	
	Borexir	
	IceCub	
	Baksan	
	HALO	
	Daya B	
	NOvA	
	SNO+	
	MicroB	
	DUNE	
	Hyper-l	
	JUNO	
	IceCub	
	KM3Ne	

>

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
Super-K	Water	Japan	32	8000	Running (SK IV)
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Recently completed
IceCube	Long string	South Pole	(600)	(106)	Running
Baksan	Scintillator	Russia	0.33	50	Running
HALO	Lead	Canada	0.079	20	Running
Daya Bay	Scintillator	China	0.33	100	Recently completed
NOvA	Scintillator	USA	15	3000	Running
SNO+	Scintillator	Canada	1	300	Running
MicroBooNE	croBooNE Liquid argon		0.17	17	Running
DUNE	Liquid argon	USA	40	3000	Future
Hyper-K	Water	Japan	266	110,000	Future
JUNO	Scintillator	China	20	6000	Future
IceCube Gen-2	Long string	South pole			Future
KM3Net	Long string	Mediterranean			Future

plus reactor experiments, DM experiments...

Future Large Supernova-Burst-Sensitive Neutrino Detectors

Hyper-Kamiokande 260 kton water Japan JUNO 20 kton scintillator (hydrocarbon) China **DUNE** 40 kton argon USA

Hyper-K /JUNO are primarily sensitive to nuebar

$$\bar{\nu}_e + p \to e^+ + n$$

• DUNE is primarily sensitive to **nue**

$$\nu_e + {}^{40}\mathrm{Ar} \to e^- + {}^{40}\mathrm{K}^*$$

extreme complementarity

Future Large Supernova-Burst-Sensitive Neutrino Detectors

Hyper-Kamiokande 260 kton water Japan JUNO 20 kton scintillator (hydrocarbon) China **DUNE** 40 kton argon USA

• Hyper-K /JUNO are primarily sensitive to **nuebar**

$$\bar{\nu}_e + p \to e^+ + n$$

• DUNE is primarily sensitive to **nue**

$$\nu_e + {}^{40}\mathrm{Ar} \to e^- + {}^{40}\mathrm{K}^*$$

[....but each also has subdominant channels. at few to ~10% level, e.g. $\nu_e \text{+}^{16}\text{O}$]

extreme complementarity

What we want to measure

Neutrino fluxes vs E, t

What we *want* to measure

Cooling

Neutrino fluxes vs E, t

Accretion

Neutronization

What we can measure

Event rates in different interaction channels vs E, t (with imperfect tagging & resolution)

Event rates vs E, t

Neutrino fluxes vs E, t Dominant channels

Subdominant channels are in the mix too, and not always easily taggable... may be hard to disentangle!

Subdominant channels are in the mix too, and not always easily taggable... may be hard to disentangle!

Neutrino interactions in the SNB energy range

	Electrons	Protons	Nuclei
	Elastic scattering	Inverse beta decav	$\nu_e + (N, Z) \to e^- + (N - 1, Z + 1)$
	$\nu + e^- \rightarrow \nu + e^-$	$\bar{\nu}_e + p \rightarrow e^+ + n$	$\bar{\nu}_e + (N, Z) \to e^+ + (N+1, Z-1)$
Charged current	[[] √] _e ·····► ▼e ⁻	γ e⁺γ ⊽ _e	γ n ∇_{e} γ N ∇_{e} ∇_{e}
		n	γγ e γ possible ejecta and deexcitation
Neutral	ν e -	Elastic scattering D	$ \nu + A \rightarrow \nu + A^* $ $ \gamma \qquad n $
current		V	γ A
	Useful for pointing	very low energy recoils	$ u + A \rightarrow v + A $ Coherent elastic (CEvNS)
			Simple targets ~well understood

Neutrino interactions in the SNB energy range

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $
Charged current		γ e ⁺ γ _e γ	r_{v_e} $r_{e^{+/-}}$ Various possible
Neutral	е ⁻	Elastic scattering D	$ \nu + A \rightarrow \nu + A^* $ $ \gamma \qquad n $
current	Useful for pointing	vvery low energy recoils	$\nu + A \rightarrow \nu + A$ $\nu + A \rightarrow \nu + A$ A $\nu + A \rightarrow \nu + A$ $Coherent elastic (CEvNS)$
			Concrally poorly understood

For example: CC and NC interactions on oxygen

F. Nakanishi, ORNL workshop 2023

 $\mathsf{ES}(\bar{v}_e + e)$

70

 $ES(v_r + e)$

90

100

80

Neutrino Energy [MeV]

 10^{-43} L 10^{-43} L

20

30

40

50

60

Neutral current(NC) Reacts with all neutrinos

✓Independent of neutrino oscillation →Possible to access the total flux of supernova neutrinos

> Observables depend on nuclear structure

Expected energy spectrum in SK from K. Langanke et al.

Newer calcs by Nakazato et al.

Best to *measure* it!

Stopped-Pion (π**DAR)** Neutrinos

 $|\nu_e|$

 $\mu^+ \rightarrow e^-$

3-body decay: range of energies between 0 and $m_{\mu}/2$ DELAYED (2.2 μ s)

Stopped-pion neutrinos are very supernova-esque...

- understanding of SN processes & detection
- understanding of weak couplings (g_A quenching) & nuclear transitions

Stopped-Pion Neutrino Sources Worldwide

Comparison of pion decay-at-rest $\boldsymbol{\nu}$ sources

Comparison of pion decay-at-rest v sources

Spallation Neutron Source

Oak Ridge National Laboratory, TN

1552

Proton beam energy: 0.9-1.3 GeV Total power: 0.9-1.4 MW Pulse duration: 380 ns FWHM Repetition rate: 60 Hz Liquid mercury target

The neutrinos are free!

Fluxes depend on proton energy as well as power

G4 QGSP_BERT, validated vs HARP/HARP-CDP

Time structure of the SNS source 60 Hz *pulsed* source

The SNS has large, extremely clean stopped-pion v flux

0.08 neutrinos per flavor per proton on target

a.u.

Neutrino flux at ~20-30 m from the SNS amounts to ~ 2 SNe per day! (and will be twice that soon)

The COHERENT collaboration

http://sites.duke.edu/coherent

Siting for deployment in SNS basement

(measured neutron backgrounds low,

~ 8 mwe overburden)

Isotropic v glow from Hg SNS target

View looking down "Neutrino Alley"

Future:

large LAr

light water

LATTPC

CryoCsl

neon

Coherent elastic neutrino-nucleus scattering (CEvNS)

$$v + A \rightarrow v + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV

Nucleon wavefunctions in the target nucleus are **in phase with each other** at low momentum transfer

For $QR \ll 1$, [total xscn] ~ A² * [single constituent xscn]

A: no. of constituents

Image: J. Link Science Perspectives

(FNAL Wine & Cheese today!)

COHERENT also measures **inelastics** ("in-COHERENT")

Material	Mass (tons)	Detector type	Channel	Status
Pb	1	Neutrons	CC/NC NINs	Published
Fe	1	Neutrons	CC/NC NINs	Data taken
Ar	0.024	Single-phase scint	CEvNS/CC/NC	Data taken
Ar	0.75	Single-phase scint	CEvNS/CC/NC	Under construction
Ar	0.25	LArTPC	CC/NC	Proposed
D_2O/H_2O	0.67 x 2	Cherenkov	CC/NC	Data-taking/construction
Nal	0.185	Scint crystal	CC on 127I	Published
Nal	2.2+	Scint crystal	CEvNS/CC 127I	Construction
Th	0.052	Neutrons	CC fission	Data taking
(H ₂ O)	7	Cherenkov	CC/NC	Proposed

Workshop on Neutrino Interaction Measurements for Supernova Neutrino Detection

6–10 Mar 2023 America/New_York timezone

Enter your search term

Q

https://indico.phy.ornl.gov/event/217/

Scientific Organizing Committee:

Marcel Demarteau Yuri Efremenko Motoyasu Ikeda Yota Hino Yusuke Koshio Yasuhiro Nakajima Jason Newby Diana Parno Kate Scholberg Hiroyuki Sekiya Roger Wendell

Workshop sponsors:

Department of Energy HEP US-Japan program ORNL

Heavy water detector in Neutrino Alley

Dominant current uncertainty is ~10%, on neutrino flux from SNS

 $\nu_e + d \longrightarrow p + p + e^-$ cross section known to ~1-2%

Measure electrons to determine flux normalization Currently one heavy water module deployed, 2nd soon

Possible new water detector @ ORNL

Jason Newby

SNS power upgrade to 2 MW underway Second Target Station upgrade to 2.8 MW in 2030's

³/₄ bunches to FTS¹/₄ bunches to STS

Many exciting possibilities for v's + DM!

Take-Away Messages

Core-collapse neutrinos

- vast science to be gained!
- we need to understand ν interactions to get the most out of a CCSN observation

Stopped-pion neutrinos are a "calibration source"

 SNS is nearly ideal!
 COHERENT in Neutrino Alley is exploiting these for CEvNS & inelastics

Future opportunities

- many materials, including CC/NC on ¹⁶O catching rain water in many different sized buckets in a big field and a dancing person

We want to catch them all!

(and measure xscns)

Especially interesting to measure electron neutrino interactions on on argon in the few tens of MeV range

$$\begin{array}{ll} \text{CC} & \nu_e \texttt{+}^{40}\text{Ar} \rightarrow e^\texttt{-} \texttt{+}^{40}\text{K}^* \\ \text{NC} & \nu_x \texttt{+}^{40}\text{Ar} \rightarrow \nu_x \texttt{+}^{40}\text{Ar}^* \end{array}$$

- critical to understand (differential) cross sections for supernova physics in DUNE
- large theoretical uncertainties on cross sections
- **no** existing measurements

Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

DUNE Collaboration • A. Abed Abud (CERN) et al. (Mar 29, 2023)

Published in: *Phys.Rev.D* 107 (2023) 11, 112012 • e-Print: 2303.17007 [hep-ex]

More soon from COHERENT!