Galactic and cosmic chemical evolution,
and their connection to neutrino astronomy

/ lakuji ijzmoto (NA 0J)

! Neutrino astronomy

March. 6™ 2024 at UGAP2024 workshop



Chemical Evolution

Calculation of the evolutionary change in the mass fraction, Z,,
of each heavy element, i, in gas
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Each time’s Z; of gas can be recorded as stellar Z; at each time
i (at a stellar surface)

can be compared with the observed Z; of long-lived stars
(M<0.8 M)



Chemical evolution 1s a powerful tool to discuss/identity
the production sites of heavy elements

- A good example: r-process elements -

Now, we surely know they are synthesized by

neutron star mergers (NSMs) via GW170817
(!!'Latest JWST results strengthen this!!: Levan+ 2024)

But, chemical evolution suggests NSMs are NOT the sole r-process site
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we discuss

v/ the progenitor star’s mass range for canonical
core-collapse supernovae (CCSNe)

Where is its upper mass bound??

v/ the mnitial mass function (IMF

the universality or non-universality??




The observational evidence for

the missing high-mass CCSN progenitors
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Geneva models
(a) STARS/Geneva models

Here, M ., means
a high-mass end for
CCSN progenitors
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The theoretical modeling of CCSNe supports a low m,,,,

an increase in the number
of CCSNe, compared to a
single mass range:8-18M

the complex explosion/BH landscape
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It may be reasonable to assume the CCSN mass range~8-18M

(Stars with m > 18M end with black hole formation: failed supernovae)



The conventional Galactic chemical evolution scheme
adopts a high m,,, such as 50 M or 100 M
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More heavy elements are generally
ejected from CCSNe whose
progenitor stars are more massive
with a larger core mass

If mmale 8 M@,

The CCSN number
reduces to ~70%

The reduction in the
total amount of heavy
element 1s more serious

Mstar / Melement /

reduces to ~50%




Can the predictions of Galactic chemical evolution models
with m,,,.=18 M match the observed chemical abundances ?
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The difficulty of addressing this 1ssue 1s alleviated by the

renewed view regarding Galactic chemodynamical evolution.
I I

Stars radially move on the disk via a gravitational interaction

with spiral arms by losing or gaining angular momentum.

apnward
e.g. Sellwood & igration
Binney 2002;
Roskar+ 2008; .
Schonrich & ~“\m ard
Minchev &
Famaey 2010;
Grand+ 2015 _- 19¥

etc radial migration |



This theory predicts :
the stars in the solar vicinity represent
the mixture of stars born at
various Galactocentric distances over the disk
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Expectations from radial migration

1 Stars born under less efficient CCSN enrichment
than previously thought owing to a low high mass
end contribute to only a part of the local Galactic chemistry

1 The remaining composition is due to more efficient
enrichment trajectories by inner disk stars than an in situ one.



Yes, Galactic chemical evolution accepts
a 8-18 M mass range for CCSN progenitors
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On the other hand,

The Galactic bulge demands more CCSNe than that expected
from a 8-18 M mass range with the Salpeter (x=-1.35) IMF

the Salpeter IMF  the ﬂatter (x——O 9) IMF

1] range
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(e.g., Matteucci & Brocato 1990;
Ballero+ 2007)




Galactic chemical evolution for the disk and the bulge
suggests the variable IMF in the Universe

‘ How star formation proceeds‘?‘

&

moderate mode

bursting mode

|| (e.g., Pouteau+2022)

late-type galaxies

early-type galaxies

the IMF

the Salpeter
(x=-1.35)

the one generating

more numerous CCSNe
(x=-0.9)



The observed CCSN rate’s slope is steeper than

the predictions from fthe observed cosmic star formation rate
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Cosmic star formation history  Star formation history

Redshift of galaxies
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The redshift evolution of cosmic CCSN rate

The relative contribution to y(z) from each type of galaxy is
calculated by weighting with its relative proportion and mass-

to-luminosity ratio. observationally veiled
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The variation in the IMF 1s favored by the cosmic CCSN rate
evolution, at least, for 0<z<].



A high rate of BH formation is predicted:
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Predicted diffuse supernova neutrino flux (Ashida, Nakazato & TT 2023)
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Summary

) The narrow mass range (8-18 M) tfor CCSN progenitors
is found to be accepted by Galactic chemical evolution

) This narrow mass range strongly supports a variable IMF
among different type of galaxies

) This variable IMF well explains an observed large contrast
in the cosmic CCSN rates for z<1

) Diffuse supernova neutrino background is calculated, and
its enhancement at both low and high energy ranges are predicted

< 10 Mev = 30 Mev



