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* Explosion caused by the death
of massive star with = 10M,;,.

» a large amount of Vv emission
» formation of NS or BH
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Three phases of neutrino emission
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Why late phase?

* The neutrino signal is mainly determined by
a few parameters: mass, radius, and
surface temperature of a neutron star.
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Why late phase?

* The neutrino signal is mainly determined by
a few parameters: mass, radius, and
surface temperature of a neutron star.
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Many uncertainties in early phase:
mass accretion, convection, and
multi-D hydrodynamical instabilities.

Developing
a basis!




Mass-radius relation of NSs

Ozel & Freire, ARAA 54 (2016)
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» Equation of state (EOS) of nuclear matter
determines the mass and radius of NSs.



Schematic picture of PNS cooling

(i) contraction (ii) shallow decay (iii) volume cooling
V V
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Theory of PNS cooling timescale

 Kelvin-Hermholtz timescale

|Eg| < gravitational energy
= TR =TT

cooling

timescale «— luminosity

* For NS mass m and radius r, we assume:

1. luminosity scales with surface area: L & r?
2. time dilation in general relativity
3. |E,;| - E, (binding energy of NSs)




PNS cooling timescale formula

Nakazato & Suzuki, Apd 891 (2020), arXiv:2002.03300

* Binding energy of NS as a function of (m, r)
» For a large class of EOSs, the following is
approximately satisfied (Lattimer & Prakash, ApJ 550, 2001):

Ey 0.6 X Gm/rcz
mez 1-05x06m/ ,
m: NS mass, 7: NS radius
E, : Binding energy of NS

2 -3
m T 1
= Tcool X (1.41\/1@) (10 km) (1-0.58)/1-2p" b= rc2



Decay timescale of v light curve

» Using parametric EOS,
PNS cooling simulation |
is performed and decay -~ >
timescale is evaluated ; *© ol ot
for various models with = .~ i
different masses. A
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Theory vs. simulation results
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v' Theory describes simulation results faithfully.
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Estimation of NS mass & radius

» Crossing point of neutrino cooling timescale
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Cosmic background neutrinos
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* Neutrinos emitted by all core-collapse SNe
In the causally-reachable universe
constitute diffuse background radiation.

« Can we detect DSNB neutrinos? What
determines their flux and spectrum?




Formulation {dg; . J

dE,
dP(E,) / Reo(2) <dN(EL)> dz
= el A
dFE, 0 CC dE’ @(1 23 0,

* Cosmological parameters:
H, = 67.7 km/s/Mpc, Q,, = 0.31, Q) = 0.69

dN(E(,>>

* Spectrum of supernova neutrinos: < =y
v

» Core-collapse rate: Rqc(2)
(from Tsujimoto, 2023)



Neutrinos from BH formation

Mean neutrino energy is higher.

» because the mass accretion continues until the
BH formation and the core is heated.
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Neutrino emissions from SN with NS formation and BH formation



Nuclear equation of state

* Impacts on the neutrino emission:
» for NS case, smaller radius — larger emission

2
" total energy is E~ “Hns

Rns 5
» for BH case, _
higher maximum mass - 109250 shen
— larger emission : -

* \WWe adopt 3 types of :
EOS in this study. e

Nakazato et al. OE T
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Neutrinos from PNS cooling

* Provided in Zenodo (advertisement!!)

January 31, 2022
Supernova Neutrino Light Curves from Proto- 256 *] 9|8d
Neutron Star Cooling with Various Nuclear s T
Equation of State

NAKAZATO, Ker'ichiro; the nuLC Collaboration
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with different initial conditions are involved for each EOS. The format of the spectral data is the same with that of pen
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According to Tsujimoto (2023)

» Galactic chemical evolution implies that:
1. E/SO, Sab galaxies have flatter IMF
2. Progenitors with = 18M, becomes BH




According to Tsujimoto (2023)

» Galactic chemical evolution implies that:
1. E/SO, Sab galaxies have flatter IMF
2. Progenitors with 2 18M, becomes BH
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According to Tsujimoto (2023)

» Galactic chemical evolution implies that:
1. E/SO, Sab galaxies have flatter IMF
2. Progenitors with = 18M, becomes BH

flSM Yimp(M)dM flatter IMF for

« CCSN rate: p.(2) 1:(1)\;\146 early type galaxies
01M® M-Yymr(M)dM /

| CCSN rate

» cosmic star formation
rate, p.(z), is from

Hopkins & Beacom (20006)
Madau & Dickinson (2014)
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Tsujimoto, MNRAS 518 (2023)



DSNB fl Ashida, Nakazato & Tsujimoto,
UX Apd 953 (2023), arXiv:2305.13543
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« Comparing with other work, enhancement at
low (=10 MeV) and high (=30 MeV) energies

— due to high z and BH sources, respectively



Evaluation of signal significance

* Analysis based on Bayes’ theorem

P(obs|model) x P(model)
Ymodel P(0bs|model) X P(model)

P(model|obs) =

* Observables are low ( ) and
high (17.3 < E, < 31.3 MeV) energy event

numbers: obs = { Ny, Npign}

* Models with our DSNB + BG vs BG only
» BG: non-NCQE, NCQE, accidental, Li9
» Systematic and statistical errors are considered.



Results of signal significance
* Mostly, our signal models can be detected
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1.0

SK-Gd (10 yr):
70% neutron-
tag efficiency

HK (10 yr):

Posterior probability
o o o
N3 o)} oo
H *—

L
" f
o]
£
[Vp]
O
o
]
_ o

neutron-tag 0.2
efficiency same

. iy T 7 oy

with SK-1V = I = ; = > s = ;: =

£ 2 § 8 § &2 £ 2 8§ 8 8

g &5 5 95 5 8 &5 8§ 9 5

g B 2 5 =« § g F 4 & g

v & 5 F§ 4§ f§ € o S & &

§ 8 g = = § @ 2 T I



Summary

* Neutrino detection from nearby and past
supernovae will provide various physics
opportunities.

* Neutrino light curve on the late phase is
determined by EOS as well as the NS mass.
» Cooling timescale depends on m and r.

« DSNB flux is evaluated based on the recent
Galactic chemical evolution model.

» Both the core-collapse rate and fraction of BH
formations are higher than in previous models.

» The detection will be achieved in near future.
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