

ニュートリノレス二重 ベータ崩壊の世界情勢

丸藤(寺島) 亜寿紗 東北大学ニュートリノ科学研究センター 2022年10月3日

Introduction

- Originally m_v=0 in standard model
 - $m_{\nu} \neq 0$ from oscillation experiment

Experiment Search for neutrinoless double beta (0vββ) decay

Neutrinoless double beta decay

Experimental sensitivity

Decay rate of $0\nu\beta\beta$ \Longrightarrow Effective neutrino mass Observation $\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu}|M^{0\nu}|^2\langle m_{\nu}\rangle^2$

Past	Half life	Mass of isotopes	
~100 meV ->	~10 ²⁵ yr	10~10 ² kg	
Present ∼50 meV →	∼10 ²⁶ yr	10²~10³ kg	
Near future ∼20 meV →	~10 ²⁷ yr	10 ³ kg~	
Future ~10 meV or less	∼10 ²⁸ yr	a few 10³ kg∼	

Experiment needs

- capacity of large isotope mass
- low background
- high efficiency
- good energy resolution

Isotopes for double beta decay (Q-value > 2MeV)

- No perfect isotope for double beta decay experiment

TABLE II Target isotopes currently being pursued by leading $0\nu\beta\beta$ -decay experiments. The reported $2\nu\beta\beta$ -decay half-life values are the most precise available in literature. The $0\nu\beta\beta$ -decay half-life values are the most stringent 90% C.L. limits.

Isotope	Daughter	$Q_{etaeta}{}^{\mathbf{a}}$	${f_{ m nat}}^{ m b}$	$f_{\rm enr}{}^{\rm c}$	$T_{1/2}^{2\nu\beta\beta\mathrm{d}}$	$T_{1/2}^{0 uetaeta_{e}}$
		$[\mathrm{keV}]$	[%]	[%]	[yr]	[yr]
48 Ca	⁴⁸ Ti	4267.98(32)	0.187(21)	16	$(6.4^{+0.7}_{-0.6}(\text{stat})^{+1.2}_{-0.9}(\text{syst})) \cdot 10^{19}$	$> 5.8 \cdot 10^{22}$
76 Ge	76 Se	2039.061(7)	7.75(12)	92	$(1.926 \pm 94) \cdot 10^{21}$	$> 1.8 \cdot 10^{26}$
82 Se	82 Kr	2997.9(3)	8.82(15)	96.3	$(8.60 \pm 0.03(\text{stat})^{+0.19}_{-0.13}(\text{syst})) \cdot 10^{19}$	$> 3.5 \cdot 10^{24}$
96 Zr	^{96}Mo	3356.097(86)	2.80(2)	86	$(2.35 \pm 0.14(\text{stat}) \pm 0.16(\text{syst})) \cdot 10^{19}$	$> 9.2 \cdot 10^{21}$
$^{100}\mathrm{Mo}$	100 Ru	3034.40(17)	9.744(65)	99.5	$(7.12^{+0.18}_{-0.14}(\text{stat}) \pm 0.10(\text{syst})) \cdot 10^{18}$	$> 1.5 \cdot 10^{24}$
116 Cd	116 Sn	2813.50(13)	7.512(54)	82	$2.63^{+0.11}_{-0.12} \cdot 10^{19}$	$> 2.2 \cdot 10^{23}$
130 Te	130 Xe	2527.518(13)	34.08(62)	92	$\left(7.71_{-0.06}^{+0.08}(\text{stat})_{0.15}^{+0.12}(\text{syst})\right) \cdot 10^{20}$	$> 2.2 \cdot 10^{25}$
136 Xe	136 Ba	2457.83(37)	8.857(72)	90	$(2.165 \pm 0.016(\text{stat}) \pm 0.059(\text{syst})) \cdot 10^{21}$	$> 1.1 \cdot 10^{26}$
150 Nd	$^{150}\mathrm{Sm}$	3371.38(20)	5.638(28)	91	$(9.34 \pm 0.22(\text{stat})^{+0.62}_{-0.60}(\text{syst})) \cdot 10^{18}$	$> 2.0 \cdot 10^{22}$

^a Values from (Alanssari et al., 2016b; Fink et al., 2012; Kolhinen et al., 2010; Kwiatkowski et al., 2014; Lincoln et al., 2013; Mount et al., 2010; Rahaman et al., 2008; Rahaman, S. and Elomaa, V. V. and Eronen, T. and Hakala, J. and Jokinen, A. and Kankainen, A. and Rissanen, J. and Suhonen, J. and Weber, C. and Äystö, J., 2011; Redshaw et al., 2009, 2007).

^b Values from (Meija and other, 2016).

- ^c Values from (Abgrall *et al.*, 2021; Artusa *et al.*, 2017; Barabash *et al.*, 2014, 2011; Dafinei *et al.*, 2017; Gando *et al.*, 2012; JSC Isotope, last accessed: Sep. 2020a,l,l; Kishimoto, 2018). Enrichment is performed via gas centrifuge for all isotopes except for ⁴⁸Ca, for which the unpublished report in (Kishimoto, 2018) used electrophoresis (Kishimoto *et al.*, 2015). For ⁹⁶Zr, 86% is commercially available (JSC Isotope, last accessed: Sep. 2020a), however a 91% enrichment was achieved at smaller scale (Finch, 2015). For ¹¹⁶Cd, 82% is the highest value used in a $0\nu\beta\beta$ -decay experiment(Barabash *et al.*, 2011), however enrichment up to 99.5% is possible(JSC Isotope, last accessed: Sep. 2020d). For ¹⁵⁰Nd, 91% is the highest value used in a $0\nu\beta\beta$ -decay experiment(Barabash *et al.*, 2012), however enrichment up to 98% is possible(JSC Isotope, last accessed: Sep. 2020c).
- ^d Values from (Agostini *et al.*, 2015; Albert *et al.*, 2014; Alduino *et al.*, 2017b; Argyriades *et al.*, 2010; Armengaud *et al.*, 2019b; Arnold *et al.*, 2016a,b; Azzolini *et al.*, 2019b; Barabash *et al.*, 2018).
- ^e 90% C.L. limits from (Adams et al., 2021b,c; Agostini et al., 2020b; Argyriades et al., 2010; Armengaud et al., 2021; Arnold et al., 2016a; Azzolini et al., 2019d; Barabash et al., 2018; Gando et al., 2016; Umehara et al., 2008).

"Toward the discovery of matter creation with neutrinoless double-beta decay", arXiv:2202.01787v1 [hep-ex]

FIG. 16 Fundamental parameters driving the sensitive background and exposure, and consequently the sensitivity, of recent and future phases of existing experiment. Red bars are used for ⁷⁶Ge experiments, orange for ¹³⁶Xe, blue for ¹³⁰Te, green for ¹⁰⁰Mo, and sepia for ⁸²Se. Similar exposures are achieved with high mass but poorer energy resolution and efficiency by gas and liquid detectors, or with small mass but high resolution and efficiency by solid state detectors. The sensitive exposure is computed for one year of livetime. Ligher shades indicate experiments which are under construction or proposed.

Project	Isosope(s)	Detector technology, main features, and references
		Array of scintillator crystals suspended in a volume of liquid scintillator.
$CANDLES^{\dagger}$	⁴⁸ Ca	Possible operation as cryogenic calorimeters.
	7 0	Ajimura et al. (2021) and Yoshida et al. (2009)
~~~~ *	⁷⁰ Zn,	CdZnTe semiconductor detector array.
COBRA'	114,110 Cd, 128,130 T	Room temperature; multi-isotope; high granularity.
	le	Arling <i>et al.</i> $(2021)$ ; Ebert <i>et al.</i> $(2016a,b)$ ; and Zuber $(2001)$
Selena	82 Se	Amorphous ^{em} Se high resolution, high-granularity CMOS detector array. 3D track reconstruction ( $O(10\mu m)$ resolution); room temperature; minimal shielding. Chavarria <i>et al.</i> (2017)
		High-pressure gaseous 82 SeF ₆ ion-imaging TPC.
$N\nu DEx$	82 Se	$\lesssim 1\%$ energy resolution; precise signal topology; possible multi-isotope.
		Mei $et al.$ (2020) and Nygren $et al.$ (2018)
	136	Spherical TPC.
R2D2	¹³⁰ Xe	Single readout channel; inexpensive infrastructure.
AXEL	$136$ X $_{\odot}$	High energy resolution: possible positive ion detection
	AC	Obara <i>et al.</i> (2020)
		Isotope loaded liquid scintillator.
JUNO		20 ktons of scintillator; multi-isotope; multi-purpose.
		Abusleme <i>et al.</i> (2021) and Zhao <i>et al.</i> (2017)
		Liquid scintillator with quantum dots or perovskites as wavelength shifter for Cherenkov light.
NuDot		Discriminate directional backgrounds; multi-isotope.
		Gooding et al. (2018); Graham et al. (2019); Winslow and Simpson (2012); Aberle et al. (2013)
<b>TICOC</b>	967	Zr-loaded liquid scintillator.
ZICOS	Zr	Fukuda (2016) and Fukuda et al. (2020)
		Water based leaded liquid scintillator with Cherenkow light readout
THEIA		Topology and particle discrimination: multi-isotope: multi-purpose: 25 ktons of water.
		Askins <i>et al.</i> (2020)
		Opaque isotope-loaded liquid scintillator with wavelength shifting fibers for event topology.
LiquidO		Room temperature; multi-isotope; multi-purpose.
		Buck et al. $(2019)$ and Cabrera et al. $(2019)$

TABLE IX Other detector concepts. Existing experiments are marked with a dagger.





FIG. 16 Fundamental parameters driving the sensitive background and exposure, and consequently the sensitivity, of recent and future phases of existing experiment. Red bars are used for ⁷⁶Ge experiments, orange for ¹³⁶Xe, blue for ¹³⁰Te, green for ¹⁰⁰Mo, and sepia for ⁸²Se. Similar exposures are achieved with high mass but poorer energy resolution and efficiency by gas and liquid detectors, or with small mass but high resolution and efficiency by solid state detectors. The sensitive exposure is computed for one year of livetime. Ligher shades indicate experiments which are under construction or proposed.

# **Germanium detector**

- ⁷⁶Ge (N.A. 7.6%, Q-value 2039 keV). Enriched material is available.
- Excellent energy resolution O(0.1)%@Qvalue
- HPGe detector array

### From the Current Generation to the Ton Scale



MJD: New final exposure results



GERDA: Final  $0\nu\beta\beta$  results published PRL 125, 252502 (2020)



LEGEND-200: Now in commissioning



LEGEND-1000: Conceptual design development continuing

arXiv: 2107.11462

※Neutrino2022: ニュートリノ業界で一番大きい国際会議. 2年に一度開催. すべてplenary talk.

### **GERDA** (GERmanium Detector Array)

- Located at Laboratori Nazionali del Gran Sasso (Italy), ~3600 m.w.e.
- 44.2 kg of up to 87% enriched ⁷⁶Ge crystals
- Energy resolution: ~3 keV FWHM @ 2039 keV



Figure 6. Schematic view of the GERDA setup. Figure published by Nature, 2017 [62].

arXiv:2109.07575v1 [hep-ex] 15 Sep 2021

Completed

# Latest result of GERDA

• Phase II: 2015-2021, 103.7 kg-yr exposure

Phys. Rev. Lett. 125, 252502 (2020)



# **MAJORANA Demonstrator**

- Located at Sanford Underground Research Facility (USA), ~4300 m.w.e.
- 29.7 kg of 88% enriched ⁷⁶Ge + 14.4 kg natural Ge detectors
- Energy resolution: 2.5 keV FWHM @ 2039 keV
- Low noise electronics



[N. Abgrall et al. Adv. High Energy Phys 2014, 365432 (2014)]



DBD search: Completed

# Latest result of MAJORANA Demonstrator

• 2015-2021, 65 kg-yr exposure



Neutrino2022 Gruszko

# LEGEND

### Soon / future

### Target sensitivity for LEGEND-200: > 10²⁷ yr (IO), LEGEND-1000: > 10²⁸ yr (NO)

Neutrino2022 Gruszko

### LEGEND Approach: Phased Deployment



LEGEND-200:

- 200 kg, upgrade of existing GERDA infrastructure at Gran Sasso
- 2.5 keV FWHM resolution
- Background goal
   < 0.6 cts/(FWHM t yr)</li>
  - < 2x10⁻⁴ cts/(keV kg yr)
- Now in commissioning, physics data starting in 2022

### LEGEND-1000:

- 1000 kg, staged via individual payloads (~400 detectors)
- Timeline connected to review process
- Background goal <0.025 cts/(FWHM t yr),<1x10⁻⁵ cts/(keV kg yr)
- Location to be selected



# ulieta Gruszko | $0\nu\beta\beta$ in Ge | Neutrino 2022

### arXiv: 2107.11462





FIG. 16 Fundamental parameters driving the sensitive background and exposure, and consequently the sensitivity, of recent and future phases of existing experiment. Red bars are used for ⁷⁶Ge experiments, orange for ¹³⁶Xe, blue for ¹³⁰Te, green for ¹⁰⁰Mo, and sepia for ⁸²Se. Similar exposures are achieved with high mass but poorer energy resolution and efficiency by gas and liquid detectors, or with small mass but high resolution and efficiency by solid state detectors. The sensitive exposure is computed for one year of livetime. Ligher shades indicate experiments which are under construction or proposed.

### **CUORE** (Cryogenic Underground Observatory for Rare Events)

- ¹³⁰Te (N.A. 34.2%, Q-value 2527keV).
- Located at LNGS (Italy), ~3600 m.w.e. •
- TeO₂ bolometers (988 crystals in 19 towers, 742 kg),
- a total mass of  130 Te = 206 kg, 188 kg of  128 Te •
- Energy resolution ~8 keV FWHM @ Q-value





Operated at ~10 mK (7mK as lowest).

- Start DAQ in Apr. 2017
- Goal of exposure: 3 t yr of TeO₂ (~1 ton yr of  130 Te)

### Running

# Latest result of CUORE



May 31st, 2022 - Neutrino 2022 - I.Nutini (Milano Bicocca)

# SNO+ Phase I ~780 ton LS

Original: Neutrino oscillation experiment with heavy water, SNO. Nobel prize in 2015

- ¹³⁰Te (N.A. 34.2%, Q-value 2527keV).
- Located at SNOLab (Canada), ~5890 m.w.e.
- 130Te loaded liquid scintillator (LAB/PPO with 0.5% natTe).
- Target sensitivity for Phase I: IO (~ 4 ton), Phase II: NO (~20 ton)



SNC

is an <u>operating</u> neutrino detector at SNOLab with 780 t of liquid scintillator (2.2 g/L PPO in LAB)

### Water Phase: completed

- set world-leading limits on invisible nucleon decay
- measured the ⁸B solar neutrino flux with very low backgrounds

### **Pure Scintillator Phase: now**

- detecting low energy ⁸B solar neutrinos
- detecting reactor (and geo) antineutrinos to independently measure  $\Delta m_{12}^2$
- supernova neutrino live

### **Double Beta Decay Phase:**

- add up to 4,000 kg of ¹³⁰Te to the detector
- with sensitivity in the IM Ordering parameter space
- Tellurium systems are built ready for operation: Full-scale test batches in 2022 and 2023
- Goal: Begin loading Te in the detector in 2024







ICHEP 2022, Weinheimer

Soon



### courtesy: Christine Kraus





FIG. 16 Fundamental parameters driving the sensitive background and exposure, and consequently the sensitivity, of recent and future phases of existing experiment. Red bars are used for ⁷⁶Ge experiments, orange for ¹³⁶Xe, blue for ¹³⁰Te, green for ¹⁰⁰Mo, and sepia for ⁸²Se. Similar exposures are achieved with high mass but poorer energy resolution and efficiency by gas and liquid detectors, or with small mass but high resolution and efficiency by solid state detectors. The sensitive exposure is computed for one year of livetime. Ligher shades indicate experiments which are under construction or proposed.

### **CUPID** (Cuore Upgrade with Particle ID)

- CUORE's BG: from alpha particles (~90%)
- Background rejection with PID -> Scintillating bolometer
- Target sensitivity: 12 20 meV



## **CUPID-0** (First pilot detector for CUPID)



⁸²Se (N.A. 8.7%, Q-value 2998keV) 95% enriched Zn⁸²Se bolometer **Operated at LNGS** 

Exposure 16.59 kg yr  $T^{1/2} > 4.6 \times 10^{24} \text{ yr} (90\% \text{ C.L.})$  $m_{BB} < 263 - 545 \text{ meV}$ 

# **CUPID-Mo**

A demonstrator for CUPID

30 cm

- Target isotope ¹⁰⁰Mo (Q-value 3034 keV) in Li₂¹⁰⁰MoO₄ (scintillating bolometer)
- Total of 2.26 kg of ¹⁰⁰Mo



- Higher energy resolution (7.4 vs 20 keV)
- Low radioimpurity (ZnSe crystals ~30 times higher U/Th contamination)
- Easier crystal growth





Exposure (¹⁰⁰Mo) 1.17 kg yr  $T^{1/2} > 1.5 \times 10^{24}$  yr, m_{ββ} < 0.31 - 0.54 eV

Phys. Rev. Lett. 126, 181802

### arXiv:2206.05130 [nucl-ex]

Completed





FIG. 16 Fundamental parameters driving the sensitive background and exposure, and consequently the sensitivity, of recent and future phases of existing experiment. Red bars are used for ⁷⁶Ge experiments, orange for ¹³⁶Xe, blue for ¹³⁰Te, green for ¹⁰⁰Mo, and sepia for ⁸²Se. Similar exposures are achieved with high mass but poorer energy resolution and efficiency by gas and liquid detectors, or with small mass but high resolution and efficiency by solid state detectors. The sensitive exposure is computed for one year of livetime. Ligher shades indicate experiments which are under construction or proposed.

# **EXO-200**

- Completed
- ¹³⁶Xe (N.A. 9.6%, Q-value 2458 keV). Located at WIPP (U.S.), ~1600 m.w.e.
- ~175 kg of liquid Xe (80.6% enriched) in a time projection chamber
- Energy resolution ~1.2% FWHM after electronic upgrade



Amount and position of charge collected by 2 wire grids

Topological classification of event (single site/multi site) → signal/background discrimination

# Final result of EXO-200

Phase I Sep. 2011 -2014 (122 kg yr), Phase II 2016-2018 (55.6 kg yr).



EXO-200 Limit (90% C.L.)  $T^{1/2} > 3.5 \times 10^{25} \text{ yr}$  $m_{\beta\beta} < 93 - 286 \text{ meV}$ 

# **nEXO**

### **Future**

- ~5 ton of Xenon
- Target energy resolution: ~46 keV FWHM @ Q-value
- Target sensitivity  $\sim 1.35 \times 10^{28}$  yr, 5-20 meV (10yr)

ICHEP 2022, Weinheimer



### **nEXO:** a single phase ¹³⁶Xe-enriched LXe TPC

### **nEXO: LXe TPC**

enriched ¹³⁶Xe: energy resolution:  $\approx 46 \text{ keV}$  (FWHM) background index:  $B = 7 \cdot 10^{-5}$  counts/(FWHM kg yr) → expected sensitivity (10 yr):  $T_{1/2}^{0\nu} > 1.35 \cdot 10^{28}$  yr (90% C.L.)

5 t

talk by Zepeng Li



### G Adhikari et al. (nEXO Coll.) J. Phys. G: 49 (2022) 015104

→ expected sensitivity (10 yr):  $m_{\beta\beta} < 5 - 20$  meV

	EXO-200:	nEXO:	Improvements:
Vessel and cryostat	Thin-walled commercial Cu w/HFE	Thin-walled electroformed Cu w/HFE	Lower background
High voltage	Max voltage: 25 kV (end-of-run)	Operating voltage: 50 kV	Full scale parts tested in LXe prior to installation to minimize risk
Cables	Cu clad polyimide (analog)	Cu clad polyimide (digital)	Same cable/feedthrough technology, R&D identified 10x lower bkg substrate and demonstrated digital signal transmission
e ⁻ lifetime	3-5 ms	5 ms (req.), 10 ms (goal)	Minimal plastics (no PTFE reflector), lower surface to volume ratio, detailed materials screening program
Charge collection	Crossed wires	Gridless modular tiles	R&D performed to demonstrate charge collection with tiles in LXe, detailed simulation developed
Light collection	APDs + PTFE reflector	SiPMs around TPC barrel	SiPMs avoid readout noise, R&D demonstrated prototypes from two vendors
Energy resolution	1.2%	1.2% (req.), 0.8% (goal)	Improved resolution due to SiPMs (negligible readout noise in light channels)
Electronics	Conventional room temp.	In LXe ASIC- based design	Minimize readout noise for light and charge channels, nEXO prototypes demonstrated in R&D and follow from LAr TPC lineage
Background control	Measurement of all materials	Measurement of all materials	RBC program follows successful strategy demonstrated in EXO-200
Larger size	>2 atten. length at center	>7 atten. length at center	Exponential attenuation of external gammas and more fully contained Comptons



courtesy Giorgio Gratta

### 1000 ton LS KamLAND-Zen Modification of KamLAND (reactor-, geo-, solar-, astro-nu etc)

### **Double beta decay isotope:** ¹³⁶Xe

- Q-value 2.458 MeV
- Dissolved into LS ~3% by weight
- Enrichment ~90%
- Half life of  $2v\beta\beta$  decay is long (~10²¹ yr)



### Past KamLAND-Zen 400

320-380 kg of Xenon Data taking in 2011 - 2015



Reanalysis

### Present KamLAND-Zen 800

~750 kg of Xenon DAQ started in 2019



- Double amount of Xe
- Bigger, cleaner Xe-LS container
- Improved spallation rejection method
- Simultaneous fitting of single event and longlived products

### **Future** KamLAND2-Zen

~1 ton of ¹³⁶Xe Better energy resolution

combined (next page) 1st result T^{1/2} > 2.0×10²⁶ yr (Feb. 2019 - May 2021)

# ¹³⁶Xe Half-life limit (KL-Zen 800)

Internal 10 volume bins (1.57-m-radius spherical volume) × 3 time bins



# Limit on the effective neutrino mass



Experimental limit for Ge & Te: (Ge) GERDA: Phys.Lett. **125** 252502 (Te) CUORE: arXiv: 2104.06906v1 Theoretical predictions: (a) Phys. Rev. D 86, 013002 (b) Phys. Lett. B 811, 135956 (c) Euro. Phys. J. C 80, 76 Upgraded electronics

PID with neural networks

# $KamLAND2\text{-}Zen \text{ KamLAND} \rightarrow \text{KamLAND2}$

### Enlarge opening

General use: accommodate various devices such as CdWO₄, NaI, CaF₂ detectors

### ton of ¹³⁶Xe

### **New electronics**

To improve background suppression. Tagging long lived isotope from cosmic ray spallation.

### Scintillation inner balloon

BG reduction from Xe-LS container

### Winstone cone & High QE PMT

Improve light collection efficiency and photo coverage

### **Brighter LS**

Current LS ~8,000 photon/MeV LAB based new LS ~12,000 photon/MeV

 $\sigma(2.6 MeV) = 4\% \rightarrow \sim 2\%$ Target  $\langle m_{\beta\beta} \rangle \sim 20$  meV in 5 yrs

# Summary

Neutrinoless double beta decay is a key to search for physics beyond the Standard Model.

Very active field: various isotopes and technologies.

Present experiment half life limit: 10²⁵⁻²⁶ yr with a few ten to hundreds kg of isotopes.

Next target: to explore inverted hierarchy (10²⁶⁻²⁷ yr).