二重ベータ崩壊核行列要素と中性子ー陽子対相関

日野原 伸生

筑波大学計算科学研究センター

NH and Engel, Phys. Rev. C 105, 044314 (2022)

二重ベータ崩壊各行列要素実験理論合同研究会

色々な原子核構造理論による計算 EDF: 原子核密度汎関数に基づく生成座標法(GCM)計算 QRPA: 準粒子乱雑位相近似 IBM: 相互作用するボソン模型 SM: シェル模型

QRPA CH: ノースカロライナ大グループによる 原子核密度汎関数に基づくQRPA計算

proton-neutron QRPA

二重ベータ崩壊への応用

$$M_{0\nu}^{F} = \langle f | \sum_{ab} H(r_{ab}, \bar{E})\tau_{a}^{-}\tau_{b}^{-} | i \rangle$$

$$M_{0\nu}^{GT} = \langle f | \sum_{ab} H(r_{ab}, \bar{E})\vec{\sigma}_{a} \cdot \vec{\sigma}_{b}\tau_{a}^{-}\tau_{b}^{-} | i \rangle$$

$$M_{0\nu}^{F} = \sum_{abn_{i}n_{f}} H(r_{ab}, \bar{E}) \langle f | \vec{\tau}_{a}^{-} | n_{f} \rangle \langle n_{f} | n_{i} \rangle \langle n_{i} | \vec{\tau}_{b}^{-} | i \rangle$$

$$M_{0\nu}^{GT} = \sum_{abn_{i}n_{f}} H(r_{ab}, \bar{E}) \langle f | \vec{\sigma}_{a} \tau_{a}^{-} | n_{f} \rangle \langle n_{f} | n_{i} \rangle \langle n_{f} | n$$

準粒子乱雜位相近似(QRPA)

終状態核(N-2,Z+2)

□中間状態を始状態、終状態それぞれからpnQRPAで作る

□中間状態への仮想的な励起をすべて足し上げる

.

■2つの中間状態は(近似が入ってるので)異なる:マッチングが必要

□平均場近似を超えた相関(中性子-陽子相関)を入れた原子核行列要素計算

中性子・陽子(アイソスピンT=1/2,スピンS=1/2のフェルミ粒子系) 2粒子の入れ替えに対して全波動関数は反対称:空間(対称)・スピン・アイソスピン

アイソスカラー中性子ー陽子対相関依存性

□ アイソスカラー型対相関で行列要素は強く抑制される

□ 対相関を強くしすぎると計算が破綻(平均場の中性子ー陽子対凝縮相への相転移)

g_{pp}^{T=1}: 2v Fermiの行列要素がゼロになるように調整 (アイソスピン対称性の回復) g_{pp}^{T=0}: 2vββの半減期を2vGT行列要素が再現するように調整

Tuebingen

Fang et al., Phys. Rev. C 97, 045503 (2018)

		AV18						
	β_2	$_i\langle 0 0\rangle_f$	g_p^{pair}	g_n^{pair}	$g_{pp}^{T=1}$	$g_{pp}^{T=0}(1.0)$	$g_{pp}^{T=0}(1.27)$	
⁷⁶ Ge ⁷⁶ Se	0.24 0.28	0.72	1.07 1.22	1.12 1.18	1.24	0.80	0.85	
⁸² Se ⁸² Kr	0.16 0.18	0.71	0.94 1.13	1.21 1.22	1.21	0.78	0.83	
¹³⁰ Te ¹³⁰ Xe	0.12 0.16	0.73	1.02 1.07	1.07 1.10	1.14	0.77	0.79	
¹³⁶ Xe ¹³⁶ Ba	0.08 0.11	0.43	0.91 1.00	_ 1.10	1.10	0.65	0.71	
¹⁵⁰ Nd ¹⁵⁰ Sm	0.24 0.15	0.51	1.03 1.04	1.14 1.16	1.16	0.81	0.85	

Jyvaskyla

Hyvarinen and Jouni Suhonen, Phys. Rev. C 91,024613 (2015)

Nucleus	$\langle g_{\rm pair} \rangle$	$g_{\rm pp}^{T=1}$	$g_{\rm pp}^{T=0}(g_{\rm A}=1.00)$	$g_{\rm pp}^{T=0}(g_{\rm A}=1.26)$
⁷⁶ Ge	1.10	1.12	1.02	1.06
⁸² Se	1.00	1.01	0.96	1.00
⁹⁶ Zr	0.965	1.07	1.06	1.11
¹⁰⁰ Mo	1.09	1.11	1.07	1.09
¹¹⁰ Pd	1.03	1.11	0.93	1.02
¹¹⁶ Cd	1.01	0.86	0.98	1.01
¹²⁴ Sn	0.923	0.94	0.79	0.91
¹²⁸ Te	0.955	0.98	0.89	0.92
¹³⁰ Te	0.940	0.98	0.84	0.90
¹³⁶ Xe	0.930	1.00	0.77	0.80

SU(4)対称性(スピン↔アイソスピン): g_{pp}^{T=0} ~ g_{pp}^{T=1} SU(4)対称でベータ崩壊の強度大、二重ベータ崩壊(2vGT closure)はゼロ

EDF

- □ エネルギー密度汎関数(EDF)が存在し、これを最小化することで基底状態の密度が求まる (Hohenberg-Kohn)
- □ 全原子核を原理的には1つのEDFで記述可能
- EDFは現象論的に決定。Skyrme型(局所密度)、Gogny型(非局所密度)、共変型(相対論)
- 例えばSkyrme型では

$$E[\rho, \tilde{\rho}] = \int d\boldsymbol{r} [\mathcal{E}_{\rm kin}(\boldsymbol{r}) + \chi_0(\boldsymbol{r}) + \chi_1(\boldsymbol{r}) + \tilde{\chi}(\boldsymbol{r}) + \mathcal{E}_{\rm Coul}(\boldsymbol{r})]$$

ph相互作用項

1

$$\chi_t(\boldsymbol{r}) = C_t^{\rho}[\rho_0]\rho_t^2 + C_t^{\tau}\rho_t\tau_t + C_t^J \mathsf{J}_t^2 + C_t^{\Delta\rho}\rho_t\Delta\rho_t + C_t^{\nabla J}\rho_t\boldsymbol{\nabla}\cdot\boldsymbol{J}_t$$

同種粒子対相関

$$\tilde{\chi}(\boldsymbol{r}) = \sum_{q=n,p} \tilde{C}_t \left[1 - \eta \frac{\rho_0(\boldsymbol{r})}{\rho_c} \right] |\tilde{\rho}_q(\boldsymbol{r})|^2$$

EDF+QRPA

proton-neutronチャネルでのみ効くEDF

Mustonen and Engel, Phys. Rev. C 93, 014304 (2016)

アイソベクトルtime-odd項

 $\chi_1^{\text{odd}}(\boldsymbol{r}) = C_1^s[\rho_0]\boldsymbol{s}_1^2 + C_1^{\Delta s}\boldsymbol{s}_1 \cdot \Delta \boldsymbol{s}_1 + C_1^j \boldsymbol{j}_1^2 + C_1^T \boldsymbol{s}_1 \cdot \boldsymbol{T}_1 + C_1^{s\nabla j} \boldsymbol{s}_1 \cdot \boldsymbol{\nabla} \times \boldsymbol{j}_1 + C_1^F \boldsymbol{s}_1 \cdot \boldsymbol{F}_1 + C_1^{\nabla s} (\boldsymbol{\nabla} \cdot \boldsymbol{s}_1)^2$ アイソスカラー中性子一陽子対相関(\eta=0.5) $\tilde{\chi}_0(\boldsymbol{r}) = \frac{V_0}{4} \left[1 - \eta \frac{\rho_0(\boldsymbol{r})}{\rho_c} \right] |\tilde{\boldsymbol{s}}_0(\boldsymbol{r})|^2$

Set	GT resonances	SD resonances	β -decay half-lives
А	²⁰⁸ Pb, ¹¹² Sn, ⁷⁶ Ge, ¹³⁰ Te, ⁹⁰ Zr, ⁴⁸ Ca	None	⁴⁸ Ar, ⁶⁰ Cr, ⁷² Ni, ⁸² Zn, ⁹² Kr, ¹⁰² Sr, ¹¹⁴ Ru, ¹²⁶ Cd, ¹³⁴ Sn, ¹⁴⁸ Ba
В	Same as A	None	⁵² Ti, ⁷⁴ Zn, ⁹² Sr, ¹¹⁴ Pd, ¹³⁴ Te, ¹⁵⁶ Sm, ¹⁸⁰ Yb, ²⁰⁰ Pt, ²²⁶ Rn, ²⁴² U
С	Same as A	None	⁵² Ti, ⁷² Ni, ⁹² Sr, ¹¹⁴ Ru, ¹³⁴ Te, ¹⁵⁶ Nd, ¹⁸⁰ Yb, ²⁰⁴ Pt, ²²⁶ Rn, ²⁴² U
D	Those of A and ¹⁵⁰ Nd	None	⁵⁸ Ti, ⁷⁸ Zn, ⁹⁸ Kr, ¹²⁶ Cd, ¹⁵² Ce, ¹⁶⁶ Gd, ²⁰⁴ Pt
Е	Same as D	⁹⁰ Zr, ²⁰⁸ Pb	⁵⁸ Ti, ⁷⁸ Zn, ⁹⁸ Kr, ¹²⁶ Cd, ¹⁵² Ce, ¹⁶⁶ Gd, ²²⁶ Rn

Fit	Starting point	Target set	Q values	fitted parameters	
1A	SkO′	А	Comp.	$V_0 = -173.176, C_1^s = 128.279$	
1B	SkO'	В	Comp.	$V_0 = -176.614, C_1^s = 133.038$	
1C	SkO'	С	Comp.	$V_0 = -176.097, C_1^s = 126.966$	
1D	SkO'	E	Comp.	$V_0 = -209.384, C_1^s = 129.297$	
1E	SkO'	Е	Exp.	$V_0 = -159.397, C_1^s = 99.8479$	
2	SV-min	D	Comp.	$V_0 = -165.567, C_1^s = 132.271$	
3A	SkO'	Е	Comp.	$V_0 = -195.174, C_1^s = 144.833, C_1^T = -20.1618, C_1^F = -10.3125$	
3B	SkO'	E	Exp.	$V_0 = -165.158, C_1^s = 120.27, C_1^T = -17.7435, C_1^F = -17.9902$	
4	Fit 3A	E	Comp.	$C_1^j = 54.5, C_1^{\nabla j} = -78.7965, C_1^{\nabla s} = -87.5$	$\lambda/4 \approx 2 \Gamma O \Lambda (a) / from 3$
5	SkO′	Е	Comp.	$V_0 = -191.875, C_1^s = 146.182, C_1^j = -86.4276$	V1°-250 WeV fm ³

EDF+QRPA

Mustonen and Engel, Phys. Rev. C 93, 014304 (2016)

β崩壊半減期のprediction

fitに用いた実験値と結合定数の相関

Mustonen and Engel, Phys. Rev. C 93, 014304 (2016)

O	$d\mathcal{O}/dC_1^s$	$d\mathcal{O}/dV_0$	$d\mathcal{O}/dC_1^F$	$d\mathcal{O}/dC_1^T$	$d\mathcal{O}/dC_1^{\nabla s}$	$d\mathcal{O}/dC_1^{\Delta s}$	$d\mathcal{O}/dC_1^j$	$d\mathcal{O}/dC_1^{\nabla j}$
²⁰⁸ Pb E _{GTR}	57.261	-0.000	2.434	5.869	0.429	-1.002	0.000	0.143
¹¹² Sn $E_{\rm GTR}$	29.498	-1.032	1.432	2.863	0.286	-0.573	0.000	0.000
76 Ge $E_{\rm GTR}$	45.115	-7.225	2.004	4.295	0.429	-1.145	0.000	0.000
¹³⁰ Te $E_{\rm GTR}$	53.790	-3.096	2.434	5.297	0.429	-1.002	0.143	0.000
90 Zr $E_{\rm GTR}$	29.498	-1.032	1.288	2.720	0.429	-1.002	-0.143	0.143
⁴⁸ Ca E _{GTR}	32.968	-0.000	1.432	3.149	0.573	-1.288	0.000	0.000
208 Pb E_{SDR}	52.055	-0.000	2.291	4.008	0.286	-1.575	-0.143	-0.143
90 Zr $E_{\rm SDR}$	29.498	-0.000	1.575	2.004	0.286	-1.432	-0.286	-0.143
⁵⁸ Ti log ₁₀ t	4.749	-4.318	0.203	0.445	0.045	-0.109	-0.011	-0.002
78 Zn $\log_{10}t$	6.889	-2.922	0.256	0.589	0.164	-0.382	0.253	-0.025
⁹⁸ Kr log ₁₀ t	5.410	-3.252	0.265	0.559	0.050	-0.116	-0.012	-0.003
126 Cd $\log_{10} t$	5.583	-4.641	0.252	0.496	0.017	-0.050	0.001	0.007
152 Ce $\log_{10}t$	5.409	-2.474	0.293	0.540	0.051	-0.120	0.003	-0.009
¹⁶⁶ Gd log ₁₀ t	5.081	-2.924	0.250	0.497	0.035	-0.132	-0.007	-0.010
204 Pt $\log_{10}t$	3.755	-3.340	-0.015	0.160	-0.018	-0.316	-0.076	0.026

この実験データから決められるのは C₁^s(アイソベクトルスピン相互作用)とV₀(アイソスカラー対相関強度)のみ QRPAによる2vββ 行列要素の予言

NH and Engel, Phys. Rev. C 105, 044314 (2022)

□ β崩壊の半減期でg_{pp}を合わせたEDFによるQRPA計算 → 2vββ NME値の予言が可能

EDF+QRPA計算のまとめ・展望

- □ 同一の相互作用で全原子核の計算が可能
- β崩壊の半減期でV₀(g_{pp})を合わせたEDFによる2vββのQRPA計算
- Gamow-Teller、Spin-dipole、β崩壊では2つの結合定数(C1^s, V0)の決定が可能
- **□** 0vββ・二重電子捕獲(ECEC)の行列要素計算
- □ アイソベクトルtime-oddの他の結合定数の決定は難しい。アイソスカラー対相関部分は?

 $\tilde{\chi}_0(\boldsymbol{r}) = \tilde{C}_0^s |\tilde{\boldsymbol{s}}_0|^2 + \tilde{C}_0^{\Delta s} \operatorname{Re}(\tilde{\boldsymbol{s}}_0^* \cdot \Delta \tilde{\boldsymbol{s}}_0) + \tilde{C}_0^T \operatorname{Re}(\tilde{\boldsymbol{s}}_0^* \cdot \tilde{\boldsymbol{T}}_0) + \tilde{C}_0^j |\tilde{\boldsymbol{j}}_0|^2$

 $+ \tilde{C}_0^{\nabla j} \operatorname{Re}[\tilde{\boldsymbol{s}}_0^* \cdot (\boldsymbol{\nabla} \times \tilde{\boldsymbol{j}}_0)] + \tilde{C}_0^{\nabla s} |\boldsymbol{\nabla} \cdot \tilde{\boldsymbol{s}}_0|^2 + \tilde{C}_0^F \operatorname{Re}(\tilde{\boldsymbol{s}}_0^* \cdot \tilde{\boldsymbol{F}}_0)$

□ QRPA近似の問題。始状態と終状態があまりに異なると近似が破綻

