Single and Double Charge-Exchange Reactions to Study Nuclear Matrix Elements (NMEs) for Neutrinoless Double Beta Decays (DBDs).

RCNP DBD 2022

Hiro Ejiri RCNP Osaka

RCNP DBD Oct. 2-4, 2022. RCNP Thanks the organizers for the invitation.

- 1. Nuclear matrix elements (NMEs) for DBDs and giant isospin spin ($\tau \sigma$) resonances and $\tau \sigma$ responses.
- 2. Experimental spin dipole (SD) giant resonances and quenching of GT and SD single-beta NMEs.
- **3.** SD giant resonances and pnQRPA DBD NMEs.
- 4. Double Charge-exchange Reactions for DBD NMEs
- 5. Impact on DBD experiments and on DBD NMEs.
- 1. H. Ejiri, J. Suhonen, K. Zuber, Phys. Rep. 797, 1 (2019).
- 2. H. Ejiri, Universe 6, 225 (2020); Frontiers in Physics 9, 650421 (1921).
- 3. L. Jokiniemi, H. Ejiri, D. Frekers, J. Suhonen, P. R. C 98, 24608 (2018).
- 4. H. Ejiri, L. Jokiniemi, J. Suhonen, Phys. Rev. C. Lett, 105 L022501 (2022).
- 5. H. Ejiri, Universe, 2022, 8, 457 (2022)

1. DBD NME and SD

H(r₁₂)~1/r₁₂ ν potential for ν-exchange, M^{0ν}=Σ_J M(J) J= Multipole sum M(J) = Σ_k M_k(J), Sum over all intermediate state k 1. Spin (σ) isospin (τ) correlation 2. Spin Dipole SD (L=1) τσY₁ to match the v momentum

Double β decay, single β &v and CERs

DBD M_1 , M_2 via neutrino potential by single β , v, μ . CER NMEs $M(\alpha, \beta^{\pm}) = (g_A^{eff})^{\pm} M(QRPA \ \alpha \ \beta^{\pm}) \ \alpha = GT$, SD. SQ, · · (g_A^{eff}) for renormalization effects due to non-nucleonic and nuclear medium effects which are not in pnQRPA. $(g_A^{eff})^- \sim (g_A^{eff})^+$ for β^- , β^+ and $(g_A^{eff})^2$ for $\beta\beta$ $M(\alpha, \beta\beta) = (g_A^{eff})^2 M(QRPA \ \beta\beta)$

Spin isospin giant resonances and spin isospin core polarization in β – γ and CERs

Nucleons and quark $\tau\sigma$ polarizations reduce nucleon σ τ for a nucleon at surface

Nucleus

σ

Nucleon $\tau \sigma$ giant resonances at 10-30 MeV region, Quark $\tau \sigma \Delta$ -isobar nucleon-hole at 250 MV region.

H. Ejiri, J.I. Fujita Phys. Rep. 38 1978

ß

Spin isospin polarizations and quenching

Spin isospin (στ) repulsive interactions push up most strengths into the τ στ GRs (IAS, GT, SD), Leaving little τ στ strengths at the low-states.

$$\begin{split} |I\rangle &= |QP\rangle - \epsilon |GRn\rangle - \delta |GR \Delta\rangle \\ M^{\beta} \sim k^{eff} M_0 \quad M_0 = QP \\ k^{eff} \sim 1/(1+\chi) = \frac{1}{4} \quad \chi: susceptibility ~ 3 \\ 1^+ 2^- \\ due to nuclear and isobar polarizations. Ejiri Fujita 1968-1978 \end{split}$$

Nuclear $\tau\sigma$ symmetry, $\tau\sigma$ GR, $\tau\sigma$ polarization

1. T= β , γ ,CER operators : vector T= τY_l , Axial-vector T= $\tau \sigma Y_l$

2. [H, T] ~ $E_G T$ T|i>; T GR, giant resonance: most T strengths, and little <f|T|i> T phonon = Coherent sum of all (N) ph excitations GR NME= $M_{GR} = N^{1/2} Ms$, $E_{GR} = Es + \chi N$

 $\begin{array}{ll} T=\tau & T|i>=IAS \ No \ \tau \ Fermi \ strength \\ T=\tau\sigma, & T|i>=GT \ GR \ , \ little \ (\sim 10^{-1}) \ GT \ strength \ to \ low \ states \\ T=\tau\sigma Y, \ T|i>=SD \ GR \ , \ little \ 2^- \ strength \ to \ low \ states \end{array}$

3. T isospin and spin isospin polarization $|f\rangle = |f\rangle_0 \cdot \varepsilon |GR\rangle$ $M \sim M_0 [1 - \varepsilon M_{GR}/M_0]$ $= k^{eff}M_0 \qquad k^{eff} = 1/[1+\chi] \qquad \chi = \tau/\tau\sigma$ susceptivility $\varepsilon \sim 0.07$ admixture of GR $M_{GR} = 6$ makes $k^{eff} = 0.6$ as exps.

High E resolution (³He,t) CERs at RCNP Osaka

2. Exp. GT & SD GRs and quenching for single- β

n

 $(V_{\tau o}/V_{\tau})^2 \sim 10$ at E~0.42 GeV CERs at RCNP ^{3}He

Most to strengths are pushed up into GRs (Giant resonances) Fermi No at low states, all in F-GR: IAS GT A few % at low states, 50% GT-GR SD A few % at low states, main SD-GR

Ejiri, Suhonen, Zuber PR 797 1 2019

θ~a

IAS, GT and SD GRs

 $\begin{array}{l} {\bf E}_{G} \, ({\bf IAS}) = 5{+}0.3 ({\bf N-Z}) \\ {\bf E}_{G} \, ({\bf GT}) = 0.2 \, ({\bf N-Z}){+}9{=}0.06{\bf A} + 6.5 \\ {\bf E}_{G} \, ({\bf SD}) = 0.2 \, ({\bf N-Z}){+}16.5{=}0.06{\bf A}{+}14 \end{array}$

GT and SD same A dependence E(SD)~E(GT)+0.9 ħω L=I excitation

E_G GR –Energies increase smoothly as N-Z and A, reflecting nuclear core property

Summed strengths of GRs and low-QP states

 $\mathbf{B}_{\mathbf{S}}(\mathbf{IAS}) = \mathbf{N} \cdot \mathbf{Z},$

B_S(GT) =3 (N-Z) Nucleon sum*

 $B_{GR}(GT) \sim B_A(GT) = 0.55$

B_L(GT) for E= 0-6MeV ~0.2- 0.1 not increase as N-Z

 $\mathbf{B}_{\mathbf{GR}}(\mathbf{SD}) \sim \mathbf{B}_{\mathbf{A}}(\mathbf{GT})$

B_L(SD) for E= 0-10 MeV ~ 0.1 of B(SD sum not increase as N-Z

* Ikeda Fujita Fujii Sum -rule

Renormalization of β & γ for low QP states

$$\begin{split} M^{\beta} \sim k \ M_0 & M_0 = QP \\ k \sim 0.2 \text{-} 0.25 \end{split}$$
 due to such nucl. and non-nucl. $\tau \sigma$ correlations and nucl. medium that are not in QP model.

 $M^{\beta} \sim k_{M} M_{QR} M_{QR} = pnQRPA$ $k_{M} = g_{A}^{eff}/g_{A} \sim 0.65 \pm 0.1$ due to such non-nucl. $\tau\sigma$ correlations and nucl. medium that are not in QRPA

Spin J

H, Ejiri J. Suhonen J. Phys. G. 42 2015 H. Ejiri N. Soucouti, J. Suhonen PL B 729 2014 . L. Jokiniemi J. Suhonen H. Ejiri AHEP2016 ID8417598 L. Jokiniemi J. Suhonen. H. Ejiri and I. Hashim PL B 794 143 (2019)

0.2

0

12

Fig. 29. Effective values of g_A in different theoretical β and $2\nu\beta\beta$ analyses for the nuclear mass range A = 41 - 136. The quoted references are *Suhonen2017* [216], *Caurier2012* [233], *Faessler2007* [242], *Suhonen2014* [243] and *Horoi2016* [235]. These studies are contrasted with the ISM β -decay studies of *M*-*P1996* [229], *Iwata2016* [230], *Kumar2016* [231] and *Siiskonen2001* [228]. For more information see the text and Table 3 in Section 3.1.2 and the text in Section 3.1.3.

. Ejiri H, Suhonen J and Zuber Z 2019 Phys. Rep. 797 1

3. SD giant resonances and pnQRPA DBD NMEs.

DBD pnQRPA NMES with g_{ph} from exp. E(SD) $g_A^{eff}/g_A = 0.75$ from GT sum

M^{0v} and M^{0v}_A decrease as A and N-Z, in contrast to F, GT, SD GR energies and strengths which increase as A and N-Z.

The model NMEs smoothly decrease as A and N-Z, reflecting the nuclear core effects, depending little on the valence nucleons.

E(SD GR) MeV

L. Jokiniemi, H. Ejiri, D. Frekers, and J. Suhonen, P. R. C 98, 24608 (2018).

NMEs decrease as E-GR and g_{ph}

1. L. Jokiniemi, H. Ejiri, D. Frekers, and J. Suhonen, P. R. C 98, 24608 (2018).

$M^{0\nu}$ (pnQRPA) with experimental parameters

M⁰ν~ pnQRPA with experimental ROPP2 $g_A^{eff}/g_A 0.65 \pm 0.1$, g_{ph} from SD GR –E and g_{pp} from 2νββ exps.

 $M^{0v} = 3-2 \sim 5.2 - 0.023 A \pm 10\%$

A smooth function of A, reflecting the nuclear core effect, in contrast to the 2νββ NMEs, which depend on the valence nucleons.

4. Double charge exchange reactions (DCERs) Mainly double GRs (GT, SD). Little strengths at low-states of the DBD interest

NEWS: Cappuzzello, Agodi, Menendez, Lenske F. Cappuzzello et al Eur. Phys. J. A 51 2015 145. NEUMEN C. Agodi et al., NEWS , Catania HI CER Project N. Shimizu, J. Menendez, K. Yako Phys. Rev. Lett. 120 142502 2018 H. Lenske et al, Universe 7() 98 2021. 17

3. Double Charge Exchange Reaction

RCNP ⁵⁶Fe(¹¹B,¹¹Li) ⁵⁶Ni at E=0.88 GeV. 1. $(V_{\tau\sigma}/V_{\tau})^4 \sim 12$ enhances $\tau\sigma$ GT SD excitation 2. Q value = - 50 MeV, p-transfer 100 MEV/c same as DBD, and L=1 (SD)

SCER ⁷⁶Ge (³He,t)⁷⁶As at p=70 MeV/c SD strength 0.1 of QP with $k_{\tau\sigma} \sim 0.3$. ¹³C(¹¹B,¹¹Li)¹³O excites well the ground state and other low states DCER ⁵⁶Fe(¹¹B,¹¹Li) ⁵⁶Ni excites little low-QP GT-SD states with $(k_{\tau\sigma})^2 \sim 0.1$ 18

SCER and DCER NMEs

The SD cross-section is expressed in terms of the SD strength $B(SD,QP_i)$ as

 $d\sigma(\mathrm{SD}, \mathrm{QP}_i)/d\Omega = (2L+1)K(\mathrm{SD}, \mathrm{QP}_i)N(\mathrm{SD}, \mathrm{QP}_i)|j_1(q_iR)|^2|J_{\tau\sigma}|^2B(\mathrm{SD}, \mathrm{QP}_i),$

$$\frac{d\sigma(\mathrm{SD},\mathrm{QP}_i)/d\Omega}{d\sigma(\mathrm{F},\mathrm{IA})/d\Omega} = 3 \frac{|j_1(q_i R)|^2}{|j_0(q_{\mathrm{IA}} R)|^2} \frac{|J_{\tau\sigma}|^2}{|J_{\tau}|^2} \frac{B(\mathrm{SD},\mathrm{QP}_i)}{B(\mathrm{F},\mathrm{IA})},$$

$$\frac{d\sigma(\text{GTSD}, \text{QP}_k)/d\Omega}{d\sigma(\text{FF}, \text{DIA})/d\Omega} = \frac{3|j_1(q_k R)|^2}{|j_0(q_{DI} R)|^2} \frac{|f_{\tau\sigma}|^4}{|J_{\tau}|^4} \frac{B(\text{GTSD}, \text{QP}_k)}{B(\text{FF}, \text{DIA})},$$

Reduction coefficients for SD and GT · SD NMES

Figure 3. Reduction coefficients for axial-vector NMEs. Light blue triangles: $k_{\tau\sigma}$ (SD) for the QP SD states by SCERs on DBD nuclei. Blue diamonds: $k'_{\tau\sigma}$ (SD) for low-ling SD states by SCERs on DBD nuclei. Light blue square: $(k_{\tau\sigma}$ (GTSD))^{1/2} for the QP GT-SD states by DCER on ⁵⁶Fe. Solid line: the reduction coefficient of 0.3 to guide eye.

Nuclide	B(SD, QP)	B(F, IA)	$k_{\tau\sigma}$ (SD)	$k'_{\tau\sigma}(SD)$
⁷⁶ Ge	0.080 ± 0.016	12	0.30 ± 0.05	0.26 ± 0.05
⁸² Se	0.091 ± 0.018	14	0.29 ± 0.04	-
⁹⁶ Zr	0.024 ± 0.005	16	0.27 ± 0.04	0.31 ± 0.06
¹⁰⁰ Mo	0.053 ± 0.011	16	0.35 ± 0.05	0.33 ± 0.06
¹²⁸ Te	0.452 ± 0.090	24	0.32 ± 0.05	0.29 ± 0.05
¹³⁰ Te	0.456 ± 0.090	26	0.31 ± 0.05	0.29 ± 0.05
¹³⁶ Xe	0.457 ± 0.091	28	0.34 ± 0.05	0.26 ± 0.05
Nuclide	B(GTSD, QP)	B(FF, DIA)	$k_{\pi\sigma}$ (GTSD)	-
⁵⁶ Fe	0.61 ± 0.12	8	0.092 ± 0.014	-

4. Impacts

1. DBD EXPs : M^{0v} = 2~3 smooth function of A, depends little on individual nuclei. DBD isotopes should be selected by detector requirements, ton scale isotopes N and low-BG B

 $m_v = 2 m_0 [B/NT]^{\frac{1}{4}}$ $m_0 \sim 40 \text{ meV} / M^{0v} \text{ with } \epsilon = 0.5$ for Ge, Se. Mo. Cd. Te. Xe 21

2. DBD Models.
 DBD model |i> and |f> are such that have realistic τ -τσ correlations and/or effective weak coupling to reproduce the quenched and enhanced τ -τσ at low-states and giant resonances in intermediate nucleus.

22

5. Quark $\sigma\tau$)flip GR=Delta Δ and quenching of $\sigma\tau$ -g_A

Bohr Mottelson PL B 100 1981 Rho NP A 231 1974 H. Ejiri PRC 26 '82 2628 $|I> \sim |QP> - \varepsilon |GR N> - \delta |GR \Delta>$ M~ k^{eff} M₀ k^{eff} (Δ) ~1/[1+ χ_Δ] GT sum χ_Δ~0.4, k^{eff} (Δ)~0.7

Kirchuk et al., Phys. Scripta 59 1999

$$V = g'_{NN} C \delta^{3}(\mathbf{r}_{12}) \sigma_{1} \cdot \sigma_{2} \tau_{1} \cdot \tau_{2} + g'_{\Delta N} \frac{f_{\pi} N \Delta}{f_{\pi} N N} C \delta^{3}(\mathbf{r}_{12}) \mathbf{S}_{1} \cdot \sigma_{2} \mathbf{T}_{1} \cdot \tau_{2}$$

 $g_{\Delta N}$ '/g_{NN}'=0.6 B(GT) quench 0.5 g^{eff}_A/g_A=0.7 at A=209

(³He,t) with E=2 GeV 150 MeV/c SQ 3⁺ S0=4⁻ Quark $\tau\sigma$ excit to Δ D. Contard et al. PL B 168

Delta Δ **quenching** effect

Delta giant resonance reduces $M^{0\nu}$ $k=g_A^{eff}/g_A = (1+\chi_\Delta)^{-1}$ $\chi_\Delta = k h_\Delta A$ since all nucleons are involved in the Δ excitation.

* Assume $k_{\Delta} = g_A^{eff}/g_A \sim 0.74$ from GT total strength/sum without Δ . *A dependence of h_{Δ}

```
1. E(GR)-E(ph) =0.013 h \omega 3(N–Z)
h<sub>N</sub>=0.013 h \omega =\kappaA <sup>-1/3</sup>
\chi_{\Delta} =0.019 A<sup>2/3</sup>
```

2. Quench of B(GT) at A=50-150 QRPA Homma et al $h_N=2.6 A^{-0.7}$ $\chi_{\Delta} \sim 0.086 A^{0.3}$

Δ reduces τσ NMEs by 0.65-0.65Mass numberThe effect of 5-10 % can be seeneven at A~15-10 where accurate NMEs are available from shell models.

- 1. Most SD strengths are in the high SD GR. The GR energies and strengths increase smoothly with A, reflecting $\sigma\tau$ correlations.
- 2. The pnQRPA $M^{0\nu}$ with g_{ph} from the exp. GR E(SD) decreases as A, N-Z, E(SD), reflecting the negative effects of the $\sigma\tau$ repulsive interactions and $\sigma\tau$ core polarization.
- 3. Using the experimental $(g_A^{eff}/g_A) \sim 0.65 \pm 0.1$ for the pnQRPA, M⁰v~5.2 - 0.023 A , i.e. 3-2 for A=76-136.
- 4. SCER and DCER are used to study $\tau\sigma$ strength distributions.
- 5. M^{0v} values depend little on individual nuclei. DBD exps should be as ton-scale isotopes, low-BGs and good E resolution.

25

6. Experimental CERs, OMC, and DCERs and theoretical calculations of the NMEs including Δ are encouraged.

Thanks for your attention.

Most GT, SD strengths are in the giant resonance regions

$$\begin{split} B_A(GT) &= 0.55 \quad \times \text{ Sum} = 3(N-Z) \, \ast \\ B_L(GT) \quad \text{for } E = 0\text{-}6MeV \\ &\sim 0.2\text{-} \ 0.1 \quad \text{of } B_{GR}(SD) \, , \quad \text{not increase as } N\text{-}Z \end{split}$$

* Ikeda Fujita Fujii Sum -rule

 $[\tau\sigma r^{3}Y_{3}]_{4}$

 $\mathbf{M}_{\mathbf{EXP}} \sim \mathbf{k} \ \mathbf{M}_{\mathbf{QP}}$

K=0.29

M increase as A ~r³

MQPPM= Microscopic QP phonon model

L. Jokiniemi J. Suhonen H. Ejiri AHEP2016 ID8417598