Electron scattering and neutrino-less double-β decay

Toshimi Suda

The research center for ELectron-PHoton science (ELPH), Tohoku University, Sendai, Japan

electrons for neutrinos?

electron as a simulator?

as a simulator of neutrino-related nuclear reactions??

GT transitions M1 transitions

electron beam

well-controlled beam parameters : energy, current etc..

high intensity ~ 10^{15} /s (~100 uA)

electron scattering

Spectroscopic factor by (e,e'), (e,e'p)

elastic (e,e')
quasi elastic (e,e'p)
(d, ³He) etc.

(d,³He)反応: 核表面のみに感度

電子散乱: 波動関数 => (d,³He)反応測定結果を再解析

Nucl. Phys. A679(2001)267.

electrons for neutrinos?

GeV electrons for neutrinos @ JLab

Low-energy electrons for neutrinos??

SCRIT facility@RIKEN

Ee = 150 - 300 MeV world's first for exotic nuclei

ULQ2 facility@Tohoku

- Ee = 10 60 MeV
- lowest-ever Ee

new SC linac ?

Ee ~ 100 MeV

良質な低エネルギー電子ビーム 基礎研究、応用研究 独:*MESA Ee* = 155 *MeV* high-Tc SC (Nb3Sn) 加速管 開発競争: 日本、中国、米国、欧州

neutrino-less double β decay

0v2β decay process

- Majorana nature of neutrino
- neutrino mass hierarchy

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 < m_{\beta\beta} >^2$$

J. Engel and J. Menendez, Reports on Progress in Physics 80 (4) (2017) 046301.

竹内 敦人 博士論文(東北大学 2021年度)

electrons for neutrinos?

possible contribution of e-scattering

RCNP workshop Oct. 3-4, 2022

a new low-energy electron scattering facility at ELPH, Tohoku : lowest-ever Ee a new e-scattering facility for exotic nuclei at RIKEN : world's first

nuclear physics studies using low-energy electrons for neutrino-related study

nuclear matrix element of $0v2\beta$ decay low-neutrino induced nuclear reaction such as $v+^{16}O \rightarrow X$

nuclear matrix elements

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 < m_{\beta\beta} >^2$$

J : charge changing hadronic current $\propto \sigma \cdot \tau$

NME and electron scattering

¹³⁶Xe -> ¹³⁶Cs -> ¹³⁶Ba

- 1. their charge density distributions
- 2. transition densities
- 3. M1 transition strength

nuclei ever studied by electron scattering

RCNP workshop Oct. 3-4, 2022

H.deVries, C. deJager and C. deVries Atomic Data and Nuclear Data Tables 36 (987)495

Low-energy electron-scattering facilities

RCNP workshop Oct. 3-4, 2022

SCRIT @ RIKEN/RIBF

world's first for exotic nuclei

SCRIT : Self-Confining RI-Ion Target e-scattering off exotic nuclei

Ee = 150 - 300 MeV $\theta = 30 - 60 \text{ deg.}$ q = 78 - 300 MeV/c

ULQ2 @Tohoku

lowest-ever Ee

ULQ2: Ultra-Low Q2

Proton Charge Radius neutron-distribution radius of nuclei

Ee = 10 - 60 MeV θ = 30 - 150 deg. q = 5 - 116 MeV/c Twin spectrometers

Low-energy electron-scattering facilities

RCNP workshop Oct. 3-4, 2022

SCRIT @ **RIKEN/RIBF**

RIKEN RI Beam Factory (RIBF)

RIKEN SCRIT Electron Scattering Facility

RCNP workshop Oct. 3-4, 2022

Example : ¹³²Xe(e,e')

K. Tsukada et al., PRL 118 (2017) 262501.

N_{trapped} ~ 10⁸ @ le = 250 mA => L ~ 10²⁷ /cm²/s

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_{Mott}}{d\Omega} |F_c(q)|^2$$
$$F_c(\vec{q}) = \int \rho(\vec{r}) e^{-i\vec{q}\cdot\vec{r}} d\vec{r}$$
$$\rho(r) = \sum_{i=1}^Z |\phi_i(r)|^2$$

Luminosity of the SCRIT facility

	Ee	N _{beam}	target thickness	L
Hofstadter's era (1950s)	150 MeV	~ 1nA (~10 ⁹ /s)	~10 ¹⁹ /cm ²	~10 ²⁸ /cm ² /s
JLAB	12 GeV	~100µA (~10¹4 /s)	~10 ²² /cm2	~10 ³⁶ /cm ² /s
SCRIT	150-300 MeV	300 mA (~10 ¹⁸ /s)	~10 ⁹ /cm ²	~10 ²⁷ /cm ² /s
		~10 ⁷ trapped in e-beam of ~1 mm ²	ions of	

required target thickness ~ 10⁻¹⁰ !!

nuclei ever studied by electron scattering

RCNP workshop Oct. 3-4, 2022

H.deVries, C. deJager and C. deVries Atomic Data and Nuclear Data Tables 36 (987)495

