表面アルファ線検出器

2020年6月04日 早稲田大 小林兼好 第六回極低放射能技術研究会

目次

- 1. 表面アルファ線検出器
- 2. ²¹⁰Pbのバルク含有量測定
- 3. 銅のまとめ
- 4. 不導体の測定について

低バックグラウンドアルファカウンタ(XIA Ultra-Lo-1800)

表面、バルク(表面に近い)事象はアルファカウンタでどのようにみ えるか?

のアルファ線生成点までの距離。

9

10

8

Energy (MeV)

5

6

3

Δ

アルファカウンタのデメリット

- 表面に付着したバックグラウンドに関してはエネルギー分布から放射性不純物の同定がある程度可能だが、バルクに関してはエネルギー分布の連続的なので同定はできない。他の検出器測定結果を合わせ総合的な判断が必要になる。XMASSの無酸素銅では他の放射性不純物の含有量が十分低く、210Pbが同定できたが、他の不純物が多いと解析は単純ではなくなる。
- ²¹⁰Pbに関してのデメリットは、²¹⁰Poしか測定できないため、半減期が 22年と長く、1度の測定ではわからない。通常1年はかかってしまう。

銅の²¹⁰Pb/²¹⁰Poバルク含有量を測定する上で重要なことは:

- 1. アルファカウンタの検出器自身のバックグラウンドが小さい。
 - UltraLo-1800は地下に導入されバックグラウンドは 2.5<E<4.8MeVで (5.6±5.6)x10⁻⁶α/cm²/hr と小さい.
- 2. サンプル表面の放射性不純物は最小化する必要がある。
 - ・電解研磨をかけ表面付着の放射性不純物を除去した(研磨前の不純物も大きくはないことを確認)。
 - サンプル交換はクリーンルームで行った。
 - サンプルの保存はEVOH (ethylene-vinylalcohol copolymer)の袋に入れ行った。
 - サンプル表面からのバックグラウンドからなるエネルギー領域 (5.3MeV周辺)は解析にしよう せず2.5<E<4.8MeVを使うことにした。これにより表面バックグラウンドは<5%になる。
- 3. サンプル表面粗度は銅中のアルファ線の飛程(~10µm)より十分短くすべき。
 - 電解研磨後の表面粗度は <<1µmであることをレーザーマイクロスコープで確認。
- 4. 他²¹⁰Po以外の放射性不純物からのアルファ線は無視できる。
 - GD-MS測定から²³⁸U, ²³²Th が共に<100pptであることが確認できたので ²³⁸U は<1.2mBq/kg で²³²Thは<0.4mBq/kgと小さい。

- バルク含有量同定解析に用いるエネルギー領域は上の分布から2.5<E<4.8MeVに決定した。
- エネルギー分布の形はデータとMCシミュレーションで一致した。

²¹⁰Pb/²¹⁰Po含有量の算出方法

$$\begin{split} N_{0}(t) &= N_{0}(0)e^{-\frac{t}{\tau_{0}}} \\ N_{1}(t) &= N_{0}(0)\frac{1}{\frac{1}{\tau_{1}}-\frac{1}{\tau_{0}}} \left(e^{-\frac{t}{\tau_{0}}}-e^{-\frac{t}{\tau_{1}}}\right) + N_{1}(0)e^{-\frac{t}{\tau_{1}}} \\ \tau_{0} &= 32.17 \text{ yr (lifetime of }^{210}\text{Pb}) \\ \tau_{1} &= 0.55 \text{ yr (lifetime of }^{210}\text{Po}) \\ \text{N}[t] \mathcal{N}_{0}(t) &= 0 \text{ and } t^{210}\text{Po} \text{ in } 1\text{ kg at } t^{=t} \\ N_{1}(t) &= 0 \text{ and } t^{210}\text{Po} \text{ in } 1\text{ kg at } t^{=t} \\ \tau_{0} &= 0 \text{ yr } \mathcal{J}_{1} \mathcal{N}_{1}(t) \text{ and } t^{210}\text{Po} \text{ in } 1\text{ kg at } t^{=t} \\ \tau_{0} &= 0 \text{ yr } \mathcal{J}_{1} \mathcal{N}_{1}(t) \text{ and } t^{210}\text{Po} \text{ in } 1\text{ kg at } t^{=t} \\ \tau_{0} &= 0 \text{ yr } \mathcal{J}_{1} \mathcal{N}_{1}(t) \text{ and } t^{210}\text{Po} \text{ in } 1\text{ kg at } t^{=t} \\ \tau_{0} &= 0 \text{ yr } \mathcal{J}_{1} \mathcal{N}_{1}(t) \text{ and } t^{210}\text{Po} \text{ in } 1\text{ kg at } t^{=t} \\ \tau_{0} &= 0 \text{ yr } \mathcal{J}_{1} \mathcal{N}_{1}(t) \text{ and } t^{210}\text{Po} \text{ in } 1\text{ kg at } t^{=t} \\ \tau_{0} &= 0 \text{ yr } \mathcal{J}_{1} \mathcal{N}_{1}(t) \text{ and } t^{210}\text{Po} \text{ in } 1\text{ kg at } t^{=t} \\ \tau_{0} &= 0 \text{ yr } \mathcal{J}_{1} \mathcal{N}_{1}(t) \text{ and } t^{210}\text{Po} \text{ in } 1\text{ kg at } t^{=t} \\ \tau_{0} &= 0 \text{ yr } \mathcal{J}_{1} \mathcal{N}_{1}(t) \text{ and } t^{210}\text{Po} \text{ in } 1\text{ kg at } t^{=t} \\ \tau_{0} &= 0 \text{ yr } \mathcal{J}_{1} \mathcal{N}_{1}(t) \text{ and } t^{210}\text{Po} \text{ in } 1\text{ kg at } t^{=t} \\ \tau_{0} &= 0 \text{ yr } \mathcal{J}_{1} \mathcal{N}_{1}(t) \text{ and } t^{-1} \text{ yr } \mathcal{N}_{1}(t) \text{ yr } \mathcal$$

粗銅は放射平衡から大きくずれていた。 ²¹⁰Pb: 57±1Bq/kg, ²¹⁰Po: 16±2Bq/kg この結果はHPEGeの測定値 (55.6±1.5(stat.)+16.7-5.6(syst.)Bg/kg)と一致 うこの方法が正しいことを確認した。

cf. NIMA884 (2018) 157-161

無酸素銅 (C1020)サンプル (圧延)

	²¹⁰ Pb (mBq/kg)	²¹⁰ Po (mBq/kg)
OFC#1 (MMC)	40±8	47±21
OFC#2 (MMC)	20±6	33±14
OFC#3 (MMC)	27±7	160 ± 30
OFC#4 (MMC)	23±8	220±40
OFC#5 (SH copper products)	17±6	44±18
OFC#6 (SH copper products)	27±8	24±17

MMC: 三菱マテリアル

- 放射平衡が大きく壊れている。210Po含有量はサンプルにより大きく異なっているが (24~220mBq/kg),²¹⁰Pb含有量は17~40mBq/kg以内に収まっている。この測定は世界 初の無酸素銅中の²¹⁰Pb含有量の測定である。.
- 無酸素銅のよりハイグレードなClass 1のサンプルもしらべたがC1020と変わらなかった。 第六回極低放射能技術研究会@ZOOM

その他金属の²¹⁰Pbバルク測定

- •アルミ、スズなどは²¹⁰Pb含有量がバルク中にも多い。
- 鉛の測定を検討中。

sensitivity study for lead sample bulk measurement by MC simulation

- 5.3MeV alpha-rays are simulated in lead uniformly and expected signal energy distribution in alpha counter is estimated based on the current alpha counter performance (d: alpha ray generated position depth from the lead surface).
 Conversion factor is estimated to be 150 for Lead (all area measurement)
- Po210 alpha-rays in 2<d<8um are observed in 2.5<E<4.8MeV.

	Atomic mass	Density (g/cm³)	Conversion factor (1alpha/cm ² /hr(2.5<	5.3MeV alpha-ray Range estimated by	Rough sensitivity (mBq/kg)
Lead	207.2	11.34	150	15.1	~1.3
Copper	63.5	8.94	270	10.0	~2.4

不導体の²¹⁰Pbバルク測定

- 将来、特にPTFEやPMTのquartz glassなど不導体が暗黒物質探索のバックグラウンド源になりうる。特にPTFEはキセノン2相式検出器で多く用いられているが、PTFEは中性子にたいする散乱断面積が大きいので、²¹⁰Pbがあると²¹⁰Po崩壊のα線による(α、n)反応で中性子バックグラウンドが生じる可能性があるので、PTFE表面、バルクでの²¹⁰Pb含有量測定の重要性が増す。
- ・超低バックグラウンドのXIAのアルファカウンタは本来導体でないと 電場が一様にならないので、測定ができない。そこでサンプル表面 の電場をゼロに抑えることにより測定を試みてきた。

不導体の²¹⁰Pb/²¹⁰Po含有量を測定する条件

- 1. アルファカウンタの検出器自身のバックグラウンドが小さい。
 - UltraLo-1800は地下に導入されバックグラウンドは 2.5<E<4.8MeVで (5.6±5.6)x10⁻⁶α/cm²/hrと小さい.
 - 2. サンプル表面の放射性不純物は最小化する必要がある。
- 3. サンプル表面粗度は銅中のアルファ線の飛程(~10µm)より十分短く 共通事項 すべき。
 - 4. 他²¹⁰Po以外の放射性不純物からのアルファ線は無視できる。
- 不導体に だけ必要 な事項

導体と

- 5. サンプル表面電位をほぼゼロにする必要がある。
 - charge inductanceを測定するため、表面電位を一様にほぼゼロに制御しない とエネルギーがただしくわからない。

不導体表面の電場の制御

- quartz glass (不導体) サンプルは比較 的制御しやすい(PTFEと比べれば)。
- アルコールを用い、表面電位の絶対 値を<0.01kVに制御する方法を確立し、 表面電位が<0.01kVであることを確認 した上で測定した。表面に付着した Po210の5.3MeVのピークはほぼ導体 と同じようにみえることがわかる。下 は測定前に約+0.02kVだったサンプル を作り測定した比較例。

8.000

MeV

3000

2000 1000

Quartz glass plate

run#	234 (707cm ² active region)
purge	90min
duration	5.99days (Jan.10 th , 2017 - Jan. 17 th , 2017)
sample	Quartz glass plates (100x100x1mm 9 plates (#3-1~9), Toso- quartz ES-zai, made by Fujiwara-seisakusho, surface electric potential is <0.02kV by wiping ethanol. First 1day data is cut)
emissivity	$(1.85 \pm 0.46) \times 10^{-4} \alpha/cm^2/hr$ $(2.09 \pm 1.48) \times 10^{-5} \alpha/cm^2/hr$ (2.5 <e<4.8mev) $(6.72 \pm 2.74) \times 10^{-5} \alpha/cm^2/hr$ (4.8<e<5.8mev)< td=""></e<5.8mev)<></e<4.8mev)

Quartz glass plate

run#	421 (707cm ² active region)
purge	90min
duration	5.89days (Jun. 27 th , 2019 - Jul. 3 rd , 2019)
sample	quartz glass plate (10cmx10cmx2mm, 9plate (Tosoh quartz, ES series, polished, #3-1~9), made by Fujiwara-seisakusho. Delivered on Dec. 16 th , 2016).
emissivity	(5.78 ± 0.83) x10 ⁻⁴ α /cm ² /hr (1.05 ± 1.05)x10 ⁻⁵ α /cm ² /hr (2.5 <e<4.8mev) (2.74 ± 0.56)x10⁻⁴α/cm²/hr (4.8<e<5.8mev)< td=""></e<5.8mev)<></e<4.8mev)

バルク²¹⁰Po in quartz glass

	Emissivity	Emissivity
	(2.5 <e<4.8mev)< td=""><td>(4.8<e<5.8mev)< td=""></e<5.8mev)<></td></e<4.8mev)<>	(4.8 <e<5.8mev)< td=""></e<5.8mev)<>
	(α/cm²/hr)	(α/cm²/hr)
Dec., 2016	Sample delivery	
Jan. 2017	(2.09±1.48)x10 ⁻⁵	(6.72±2.74)x10 ⁻⁵
Jun. 2019	$(1.05 \pm 1.05) \times 10^{-5}$	(2.74±0.56)x10 ⁻⁴

加工時の表面への²¹⁰Pbの付着と思われる表面²¹⁰Poの増加がみられるがバルク中には有意には観測されなかった(~<7mBq/kg)。今年に入ってからも測定継続中。

time variation of PTFE surface electric potential

- PTFEは帯電列でももっともマイナスに帯電しやすい物質で、用意にマイナスに帯電する。測定前の丁寧な除電が必要不可欠である。
- 左図はPTFEがどのよう帯電しているかを 確認したもので、10cmx10cmのPTFE板を 置き表面をこすって<-1kVに帯電させ、そ の後の表面電位の経時変化を測定した。 数時間で大まかには除電されるがそれで も1日たっても <-0.1kVに帯電したままで あった。
- PTFEはかなり除電が難しいが、アルコー ルを用いることで>-0.01kVにおさえる手法 を確立した。

もう1つのPTFEが難しい点が表面租度を制御することである。 PTFE samples 通常の加工では多少粗くなってしまう。表面加工をほどこさな いことが一番租度がおさえられる。

	Gap size	Laser microscope measurement zoom up 68µm
Company A No polish	<1µm. Small gaps are mostly <1µm. There are some spots.	1.1µm
Company B Cut by circular saw	<1µm (But there are some ~1µm depth slit lines)	2.8μm 9.728um
Company A sand paper (#1500) polish	3~μm. Many slits (1-3μm). ^{K. Kobayashi, LR}	4.3μm 38.861um 34.554um

PTFEのバルク測定

- PTFEを完全に表面租度をおさえることがむずかしい。また制作時にどうしても帯電して表面にPb210が付着してしまうため、バルク測定にはエネルギー領域を狭くして(2.5<E<4.0MeV程度)見積もることが現実的と思われる。
- 加工後すぐに袋詰めして頂ける業者を探し、昨年夏から測定を開始した、今年夏ごろ4点ほどデータがそろう予定。もしバルクのPTFEがきれいであれば、<数mBq/kg程度の感度がでる。