

第7回極低放射能研究会

2021年3月25日

東京大学宇宙線研究所

関谷洋之

- SK-Gdの目指すもの
- •SKへ導入した低放射能硫酸ガドリニウムとその評価方法
- •2020年7月14日~8月17日に行ったGd導入の様子
- 導入したGd濃度の確認
- •Gdによる中性子捕獲イベントの紹介
- 導入後の様子(Dark noise、バクテリア?、LowE BG)
- ●今後とまとめ

Super-Kamiokande VI

- Ring imaging Gd-doped water Cherenkov detector
 - 49468 tons of pure water with 5426kg of Gd
 - 11129 50cm PMTs for Inner detector
- 1km (2700 mwe) underground in Kamioka
- Most sensitive to $\bar{\nu}_e$ through inverse beta decay, and the emitted neutron can be tagged with more than 50% efficiency.

SK-Gd project

- Loading Gd to SK
 - To significantly enhance detection capability of neutrons from \bar{v} interactions
 - 0.02% $Gd_2(SO_4)_3$ concentration for the 1st step
 - About 50% of neutron would be captured by Gd, enhancing neutron tagging efficiency by 2-3 times.
- Planned gradual increasement of Gd
 - Final target: 90% of neutron tagging
 - Aiming at 75% with this Kakenhi

Diffused Supernova Neutrino Backgrounds Supernova Relic Neutrino

- Neutrinos produced from the past SN bursts and diffused in the current universe.
 - ~ a few SN explosions every second $\rightarrow O(10^{18})$ SNe so far in this universe
 - Can study history of SN bursts with neutrinos

$$\frac{dF_{\nu}}{dE_{\nu}} = c \int_0^{z_{\text{max}}} R_{\text{SN}}(z) \frac{dN_{\nu}(E_{\nu}')}{dE_{\nu}'} (1+z) \frac{dt}{dz} dz$$

DSNB search in SK-IV

Already touched the predicted region! Pure water, with neutron tagging

Pure water, with neutron tagging

Neutron multiplicity cuts and topology cuts will reduce these BG

SK-Gd sensitivity will cover many predictions !

Technologies for Low RI $Gd_2(SO_4) \cdot 8H_2O$

ICP-MS

S.Ito, H.Ito, K. Ichimura et al.

Established the analysis of ²³⁸U, ²³²Th, and ²²⁶Ra at ppt level

Ge

- Sensitivity of ~0.2 mBq/kg was achieved by increasing the sample weight
- Sensitivity of $\sim 0.5 \text{ mBq/kg}$ was achieved by applying the Ra disk analysis method.

Requirement for 0.1%Gd-loading

Radioactive chain	Part of the chain	SRN (mBq/kg)	Solar- v(mBq/kg)
23811	²³⁸ U	< 5	-
2000	²²⁶ Ra		< 0.5
232-	²²⁸ Ra	-	< 0.05
In	²²⁸ Th	-	< 0.05
2351 1	²³⁵ U	-	< 30
0	²²⁷ Ac/ ²²⁷ Th	-	< 30

Enlarged sample room

Ra captured resin disk after Gd sulfate solution passed

 $^{238}\text{U} < 0.5 \text{ mBq/kg} \rightarrow 400 \text{ ppt}$ 232 Th < 0.05 mBq/kg \rightarrow 13 ppt

N.B. We don't have methods to measure 0.05mBq/kg of ²²⁸Ra

²²⁸Ra Impact to Solar neutrino

Ra is removed by water system, but Th is not

When Gd loaded one year had passed since its production and $\,^{228}\text{Th}$ had been produced about 1/3 of initial ^{228}Ra activity

Real Sokoban

To reject high Th powder and to track the RI Re-ordering of 500kg x 26 containers was required

190501

1年のみ

4000

190802

16箱

Direct supply with shovels and buckets

10 minutes later

Weighing hopper

Circle feeder

Dissolving system

Pictures

One sequence: 8.2kg(\rightarrow 8.7kg) of powder in 768L 30minues/cycle

Just after adding 8.2kg of $Gd_2(SO_4)_38H_2O$

Gd monitoring by conductivity

Conductivity suggests stable & uniform Gd concentration

Direct concentration measurement

Atomic Absorption Spectrometer

LI.Marti

Water sampled directly from various positions in the tank by insertion of tube

Observed the bottom-up flow and the getting uniform Gd condition 17

Gd concentration and Neutron capture time

 $n_{Gd} \sigma_{Gd} + n_p \sigma_p$

Number of captures in riangle t

$$\frac{dN_n(t)}{dt}\Delta t \propto - (n_{Gd}\sigma_{Gd} + n_p\sigma_p)v_n \Delta t N_n(t)$$

 $N_n(t)$: number of neutron

 ν_n : neutron velocity

 $n_{Gd} n_{\rho}$: number of nuclei in unit volume $\sigma_{Gd} \sigma_{\rho}$: capture cross section of Gd

Once neutrons are thermalized, v_n becomes ~ constant

$$N_n(t) \propto exp(-(n_{Gd}\sigma_{Gd}+n_p\sigma_p)t)$$

 $\tau \propto \frac{1}{1}$

Gd concentration

Am/Be + BGO neutron source

5cm

Am/Be source

100~200 neutrons/s

 $^{241}\text{Am} \rightarrow ^{237}\text{Np} + \alpha$

 ${}^{9}\text{Be} + \alpha \rightarrow {}^{13}\text{C}^* + n (2-6 \text{ MeV})$

 $^{13}C^* \rightarrow ^{12}C + \gamma (4.43 \text{ MeV})$

8 BGO Crystals

- The trigger is the scintillation of 4.4 MeV γ emitted from the Am/Be source simultaneously with the neutrons in the BGO crystal. (SHE trigger threshold 64 hits in 200ns).
- All the PMT hits from -5 to 535 μ s before and after the trigger are stored and searched for neutron signals. (sub trigger threshold 30 hits)

19

Spallation neutron by muon

• Event selection

Timing selection

M.Shinoki

- Michel decay-e ~2.2µs
- Neutron thermalization ~4.3µs
- PMT after pulses 10~20µs

List of spallation products

Isotope	Half-life (s)	Decay mode	Yield (total) $(\times 10^{-7} \mu^{-1} g^{-1} cm^2)$	Yield (E > 3.5 MeV) (× $10^{-7}\mu^{-1}\text{g}^{-1}\text{cm}^2$)	Primary process
n			2030		
¹⁸ N	0.624	β^{-}	0.02	0.01	¹⁸ O(n,p)
^{17}N	4.173	$\beta^{-}n$	0.59	0.02	¹⁸ O(n,n+p)
^{16}N	7.13	$\beta^- \gamma$ (66%), β^- (28%)	18	18	(n,p)
^{16}C	0.747	$\beta^{-}n$	0.02	0.003	$(\pi^{-},n+p)$
¹⁵ C	2.449	$\beta^{-}\gamma$ (63%), β^{-} (37%)	0.82	0.28	(n,2p)
^{14}B	0.0138	$\beta^{-}\gamma$	0.02	0.02	(n,3p)
¹³ O	0.0086	β^+	0.26	0.24	$(\mu^{-}, p+2n+\mu^{-}+\pi^{-})$
^{13}B	0.0174	β^{-}	1.9	1.6	$(\pi^{-}, 2p+n)$
^{12}N	0.0110	β^+	1.3	1.1	$(\pi^{+}, 2p+2n)$
^{12}B	0.0202	β^{-}	12	9.8	$(n,\alpha+p)$
^{12}Be	0.0236	β^{-}	0.10	0.08	$(\pi^-, \alpha+p+n)$
^{11}Be	13.8	β^{-} (55%), $\beta^{-}\gamma$ (31%)	0.81	0.54	$(n,\alpha+2p)$
¹¹ Li	0.0085	$\beta^{-}n$	0.01	0.01	$(\pi^+, 5p + \pi^+ + \pi^0)$
^{9}C	0.127	β^+	0.89	0.69	$(n,\alpha+4n)$
⁹ Li	0.178	$\beta^{-}n$ (51%), β^{-} (49%)	1.9	1.5	$(\pi^-, \alpha+2p+n)$
${}^{8}B$	0.77	β^+	5.8	5.0	$(\pi^+, \alpha+2p+2n)$
⁸ Li	0.838	β^{-}	13	11	$(\pi^-,\alpha^++^2H^+p^+n)$
$^{8}\mathrm{He}$	0.119	$\beta^{-}\gamma$ (84%), $\beta^{-}n$ (16%)	0.23	0.16	$(\pi^{-},^{3}H+4p+n)$
¹⁵ O			351		(γ,n)
^{15}N			773		(γ, \mathbf{p})
¹⁴ O			13		(n,3n)
^{14}N			295		$(\gamma, n+p)$
^{14}C			64		(n,n+2p)
^{13}N			19		$(\gamma,^{3}H)$
^{13}C			225		$(n,^{2}H+p+n)$
^{12}C			792		(γ, α)
¹¹ C			105		$(n,\alpha+2n)$
^{11}B			174		$(n,\alpha+p+n)$
^{10}C			7.6		$(n,\alpha+3n)$
^{10}B			77		$(n,\alpha+p+2n)$
$^{10}\mathrm{Be}$			24		$(n,\alpha+2p+n)$
$^{9}\mathrm{Be}$			38		$(n,2\alpha)$
sum			3015	50	

Distance to μ track selection

Neutron capture occurs near the muon track

S.Li and J.Beacom, Phys. Rev. C 89, 045801 (2014)

Gd monitoring by spallation neutron

Dark noise issue

Minimum ID water flow was set initially in SK-VI

Increased ID flow and lowered supply temperature

Tracing the flow by Rn injections

• Rn injection before and after the flow change

Y.Kanemura

200

0 5 10

difference between the supply water and the tank water became small again.

350

5.161/12

0.9524

14.42/18

300

200

50

100

150

200

250

300

15 20 25 30 35 40 45 50

time from the injection[hr]

0.7017

r:Moving toward the SK wall at a speed of 0.83 ± 0.10 [cm/hr] ϕ :Rotating clockwise at a speed of 4.0 [°/hr].

The results of the flow change

Transparency and dark rate in the past 1 year

Temperature and dark rate in SK-VI

Bacteria and dark rate in SK-VI

VIABLE PARTICLE COUNTER"

RION XL-10B

Flow change effect on the convection/Rn

Estimation from the Rn Injection

It's larger than that we had expected. \rightarrow Other ²²⁶Ra source? or Underestimated the effects of RIs? (Energy scale, resolution and cuts are not tuned yet)

Y.Kanemura

Next step

Planning to dissolve up to ~26 tons of additional $Gd_2(SO_4)_3 \cdot 8H_2O$ in 2021-2022

- Target Gd concentration: 0.02-0.03% (Currently 0.01%)
- Gd capture efficiency: 65-75% (Currently 50%)

Final goal (0.1%)

Next target (0.02-0.03%)

Initial loading (0.01%)

280

0 40 5₃₀

まとめ

- 2020年 0.011% Gdを導入し、ついにSK-Gdを開始した
 - DSNBを実際に探索できる感度を有しているはず
- 検出器全体でGdの濃度は一様になっている
 - 直接測定、Am/Be線源、Spallationによる中性子で確認
- 導入後、水が光っているように見える
 - •滞留と相関があり、水を一度"入れ替える"と低減した
 - 原因は調査中
- 低エネルギーBGが予想より多い
 - 228Ra, 226Ra, mis-reconstruction等の可能性を調査中
 - SK-IV程度の太陽ニュートリノ観測は可能
- 2022年 Gd 0.03%を目指している(来年の今頃)
 - 上記問題の対応
 - 原料の酸化ガドリニウムの放射性不純物レベルが高い、Gd価格急上昇中

