

エアブリッジ構造を有する超 伝導共振器の開発

埼玉大学大学院理工学研究科

成瀬雅人,和賀雄貴,二宮夏子,明連広昭

<u>謝辞</u>

デバイス作製工程の一部に、理化学研究所テラヘルツイメージング研究チームのクリーン ルーム設備を使用させて頂きました.大谷チームリーダー,美馬博士に感謝致します. 本研究は科研費20H05244からの支援を受けています.

カ学インダクタンス検出器(KID)

- 超伝導マイクロ波共振器 f₀∝(LC)^{-1/2}
- インダクタンスの変化を読み取る
- 高感度かつ多素子化可能
- meV以上のエネルギーに感度を持つ

アンテナと相性が良い 高検出効率

高感度な部分の面積が可変 Marsden et al. Proc. SPIE, 2012

周波数多重読出

480素子アレイ

- 3インチシリコン基板上
- 100 nmのニオブ膜
- ・
 +振が3-7 GHzに設計

480素子アレイの動作

- 1 K冷凍機で評価
- 動作確認は480素子中259個→歩留まり54%
- •マイクロ波伝送線路(CPW線路のGNDが浮いているのが原因?)

エネルギー分解能

エネルギー分解能[4]

$$\sigma_E = \frac{L}{L_k} \frac{\Delta^2 N_0 V}{\eta_E Q_l S(f,T)} \sqrt{\frac{4Q_c^2}{Q_l^2} \frac{k_B T_N}{P_{in} \tau_{qp}}} \propto \frac{1}{\eta_E \sqrt{\tau_{qp}}}$$

 η_E : excitation efficiency τ_{qp} : quasiparticle lifetime L: total inductance L_k :kinetic inductance Δ : superconducting gap V: volume Q_l : loaded quality factor Q_c : coupling quality factor P_{in} : readout signal's power

[4] L. Cardani, I. Colantoni, A. Cruciani, S. Di Domizio, M. Vignati, F. Bellini, N. Casali, M. G. Castellano, A. ¥sqrt 2021/3/25 第7回極低放射能技術研究会

VNA or シンセ+デジタイザを用

KIDによるアルファ線の検出

Si 基 板の 表 堀

・基板イベントは抑制されたが、エネルギー分解能向上には繋がらず

エネルギー分解能値:21

2021/3/25

エアブリッジKIDデザイン

・フォトリソグラフィー技術を用いて素子を作製した

エアブリッジの歩留まり

- エアブリッジを複数組み込んだKIDを作製
- 現状は、20µmで3つ, 50µmで1つは1素子に組み込める

<u>長さ20µm</u>

共振特性

- 20 um長まではエアブリッジによる共振Qの劣化は見られない.
- 50 um長でもQi>10⁵

20um

50um

50um付け根

2021/3/25

エアブリッジKIDのエネルギー分解能

・エアブリッジ部に当たったと思われるピークを確認できず....

■ エアブリッジの信号はメインピーク・基板イベントに埋もれた可能性

[□] エアブリッジ部分/ 全インダクタンス = 0.5%

5.293

まとめ

- 超伝導ニオブによる480素子KIDの評価
- デバイス側の基板除去による基板イベント抑制
- 50 um長のエアブリッジを組み込んでも高い共振Q値(>10⁵) を確認
- エアブリッジ部分に当たった信号は、基板イベントに埋も れた可能性が示唆された。

エアブリッジ比率の高い素子の作製・測定を行い、エアブリッジの信号の確認を目指す