### 誘導結合プラズマ質量分析計による 極微量放射性核種測定

坂口 綾 (筑波大)、高久 雄一(環境研)、宮田 滉介(筑波大)、 鹿籠 康行(Agilent)、伊藤 慎太郎(岡山大)、市村 晃一(東北大)、 中島 康博(東大)、伊藤 博士(東大)、関谷 洋之(東大)

# 極微量の放射性核種を測定するには?

# ▲ 装置や設備のスペック向上(検出下限を下げる)

- ・感度を向上する
- ・ バックグラウンドを低減する (妨害除去)

## ▲ 別定試料に関する工夫

- ・試料量を多くする(可能なものは)
- 濃縮する
- 妨害を除去する

汚染なく、できるだけ簡単に、予算と体力そして気力の限界まで!

# 公募研究での目的・方法

硫酸ガドリニウム試薬中に含まれる放射性核種の簡便・迅速定量

#### 「「一」「読導結合プラズマ質量分析計(ICP-MS)の検出限界低減

「全 硫酸ガドリニウムからのPa回収・濃集

放射性核種の要求値 (mBq/kg)

| 核種     | 超新星背景<br>ニュートリノ | 太陽<br>ニュートリノ |
|--------|-----------------|--------------|
| U-238  | <5              | -            |
| Ra-226 | -               | <0.5         |
| Th-232 | -               | <0.05        |
| Ra-228 | -               | <0.05        |
| Ac-227 | -               | <30          |
| Pa-231 | -               | <30          |



神岡のICP-MS

<u>Pa-231</u> T<sub>1/2</sub>=3.276x10<sup>4</sup> 年 (アクチニウム系列) 半減期中途半端、化学挙動不明

海洋では粒子吸着性(安定して溶存しな い) (Anderson et al., 1981, 1983)

化学種不明、濃塩酸系で1-オクタ ノールに親和性

(Sill, 1966; Burnett & Yeh, 1995; Knight et al., 2016)

## **ICP-MS**

| 質量/電荷 (m/z)で分別し、イオンの数を定量                                             |
|----------------------------------------------------------------------|
| 高感度定量分析が可能 1ppb (10 <sup>-9</sup> g/g)で 10 <sup>5</sup> cps以上        |
| 広いダイナミックレンジ ppt以下 (10 <sup>-13</sup> g/g) - % (10 <sup>-2</sup> g/g) |
| 迅速な分析 1ppb溶液 1秒以内に1%以下のRSDで測定<br><sub>試料導入・洗浄を含めても1分以内で終了</sub>      |
| 使用方法・メンテナンスが簡単<br>ルーチン分析ならば電源ONLただけでチューニング、測定、リンスをすべて自動で             |
| 他の質量分析計に比べ安価で小型                                                      |

理論については未だによく分かっていない事も多く、 改良も「\*\*\*やってみた!」等経験的な知見に基づくものが多い

# イオン源としてのアルゴンプラズマ



<u>イオン源としてのアルゴンプラズマ</u>

#### とにかく高いイオン化効率 多くの元素が90%以上イオン化(1価の陽イオン)

|          |                               |     |    |     |    | -   | 50 | 00 | 50  | 75 | 10  | < J  |     |     |     |    |     |
|----------|-------------------------------|-----|----|-----|----|-----|----|----|-----|----|-----|------|-----|-----|-----|----|-----|
| H<br>0.1 |                               |     |    |     |    |     |    |    |     |    |     |      |     |     |     |    | He  |
| Li       | Be $(M^+/M^++M) \times 100\%$ |     |    |     |    |     |    |    |     |    |     |      | С   | Ν   | 0   | F  | Ne  |
| 100      | 75                            |     |    |     |    |     |    |    |     |    |     |      | 0.1 | 0.1 | 0.1 | 9e | 6e  |
| Na       | Mg                            |     |    |     |    |     | Ai | Si | Р   | S  | CI  | Ar   |     |     |     |    |     |
| 100      | 98                            |     |    |     |    |     | 98 | 85 | 33  | 14 | 0.9 | 0.04 |     |     |     |    |     |
| K        | Са                            | Sc  | Ti | V   | Cr | Mn  | Fe | Со | Ni  | Cu | Zn  | Ga   | Ge  | As  | Se  | Br | Kr  |
| 100      | 99                            | 100 | 99 | 99  | 98 | 95  | 96 | 93 | 91  | 90 | 75  | 98   | 90  | 52  | 33  | 5  | 0.6 |
| Rb       | Sr                            | Y   | Zr | Nb  | Мо | Тс  | Ru | Rh | Pd  | Ag | Cd  | In   | Sn  | Sb  | Те  | I. | Xe  |
| 100      | 96                            | 98  | 99 | 98  | 98 |     | 96 | 94 | 93  | 93 | 85  | 99   | 96  | 78  | 66  | 29 | 8.5 |
| Cs       | Ba                            | La  | Hf | Та  | W  | Re  | Os | lr | Pt  | Au | Hg  | TI   | Pb  | Bi  | Po  | At | Rn  |
| 100      | 91                            | 90  | 98 | 95  | 94 | 93  | 98 |    | 62  | 51 | 38  | 100  | 97  | 92  |     |    |     |
| Fr       | Ra                            | Ac  |    |     |    |     |    |    |     |    |     |      |     |     |     |    |     |
|          |                               |     |    | Ce  | Pr | Nd  | Pm | Sm | Eu  | Gd | Tb  | Dy   | Ho  | Er  | Tm  | Yb | Lu  |
|          |                               |     | -  | 95  | 90 | 99  |    | 97 | 100 | 98 | 99  | 100  |     | 99  | 91  | 92 |     |
|          |                               |     |    | Th  | Pa | U   | Np | Pu | Am  | Cm | Bk  | Cf   | Es  | Fm  | Md  | No | Lr  |
|          |                               |     |    | 100 |    | 100 |    |    |     |    |     |      |     |     |     |    |     |

8eV以下のイオン化エネルギーを持つ原子は90%以上イオン化(Ar: 15.76 eV)

Houk (1986)を改変 プラズマ温度7500 K, 電子密度 1.5×10<sup>15</sup> /cm<sup>3</sup>

# 試料導入・イオン透過効率



↓ 誘導結合プラズマ質量分析計(ICP-MS)の検出限界低減

- \* バックグラウンドを下げる
- \*感度を上げる
- → 試料導入効率やイオン透過効率を上げる

# せっかくなので実物をお見せしながら解説します 本学の管理区域の造りが堅牢すぎてICP-MS部屋に無線届かず…



## 質量分離部・検出器 今回は対象外



#### 四重極マスフィルター

相対する電極の極性を同じにして直流電圧と 高周波交流電圧を重ね合わせた電圧を印加 し四重極電場を形成し、目的のm/zのイオン を検出器に送る



<u>パルス(イオン)カウンティング</u>

二次電子増倍管により増幅された 信号を電極で検出

#### <u>アナログカウンティング</u>

10<sup>6</sup>ion/s以上ではSEMの印加電圧を 下げて測定 または ファラデーコレ クターに直接イオンビーム導入

# スペクトル干渉 (BGの原因)

## 🚩 同重体干渉

<sup>135</sup>Cs<sup>+</sup>測定 環境中の<sup>135</sup>Ba<sup>+</sup>(安定核種)

## ど 二価イオン干渉

<sup>79</sup>Se<sup>+</sup>測定 環境中の<sup>158</sup>Gd<sup>++</sup>(安定核種) 低減については後ほど

## 🍋 多原子イオン干渉

<sup>231</sup>Pa<sup>+</sup>測定 試薬,プラズマガスの<sup>156</sup>Gd<sup>40</sup>Ar<sup>35</sup>Cl<sup>+</sup>

スペクトル干渉の低減



樹脂、沈殿、抽出などにより妨害元素(核種)を除去



#### コリジョン・リアクションセル ガス反応によりスペクトル干渉を低減 Heによるコリジョン



http://water-news.info/221.html

バングラデシュのヒ素汚染 堆積層の鉄酸化物が関与

<sup>56</sup>Fe<sup>+</sup> vs. <sup>40</sup>Ar<sup>16</sup>O<sup>+</sup>



<sup>75</sup>As<sup>+</sup> vs.<sup>40</sup>Ar<sup>35</sup>Cl<sup>+</sup>



運動エネルギーの差により分別

# コリジョン・リアクションセル ガス反応によりスペクトル干渉を低減 適したガスによるリアクション

<sup>80</sup>Se<sup>+</sup> vs.<sup>40</sup>Ar<sup>40</sup>Ar<sup>+</sup>

<sup>40</sup>Ar<sup>40</sup>Ar<sup>+</sup> + H<sub>2</sub> → <sup>40</sup>ArH<sup>+</sup> + <sup>40</sup>Ar + H 反応エンタルピー -21 kJ/mol

<sup>80</sup>Se + H<sub>2</sub> → <sup>80</sup>SeH<sup>+</sup> + H 反応起こらない 反応エンタルピー 150 kJ/mol

# **ICP-MS/MS**

測定核種 <sup>135</sup>Cs<sup>+</sup>

同重体 <sup>135</sup>Ba<sup>+</sup>

多原子イオン <sup>95</sup>Mo<sup>40</sup>Ar<sup>+</sup>, <sup>97</sup>Mo<sup>38</sup>Ar<sup>+</sup>, <sup>121</sup>Sb<sup>16</sup>O<sup>+</sup>, <sup>119</sup>Sn<sup>16</sup>O<sup>+</sup>



スキマーコーン・レンズ



環境試料など一般的に使用される マトリクス耐性のあるコーンとレンズ

スキマーコーンへのイオンビーム取り込み



 $X_{\rm m} = 0.67 D (P_0/P)^{1/2}$ 

**X<sub>m</sub>:マッハディスクとサンプリ ングコーンの距離** 

D:オリフィス径

P:差動排気室の圧力 P<sub>0</sub>:大気圧

\*静かな領域でスキマーに導入ならどこでもOK? \*2/3X<sub>m</sub>でスキマーに導入するのが良い? \*X<sub>m</sub>の前縁で導入するのが良い?

# ネブライザー



CC BY-SA 4.0, https://en.wikipedia.org/w/index.php?curid=54280710



# ICP-MSの高感度化

# ~イオン導入部分の改良~



https://www.chem-agilent.com/accessagilent/article.php?page=201204-04

# <sup>233</sup>Paをトレーサーに用いたPa分離法確立

まとめ

# ◆ <sup>231</sup>Pa 測定に向けたICP-MSの高感度化 >スキマーコーン、レンズ形状等を変更することで感度上昇

定量下限:231 ppq から 77 ppq まで低下

## ◆ <sup>233</sup>Pa をトレーサーに用いた化学分離法の確立

►樹脂 5 ml に対し 9 M HCI系 飽和Gd溶液 500 ml 通液 高く安定した吸着率(99.1±1.9%)、回収率(98.1±3.6%)

## 今後の展望

SKで用いられる硫酸ガドリニウム中の<sup>231</sup>Pa実測 ➤バックグラウンドレベルの定量