高圧キセノンガス検出器による ミグダル効果検証のための研究

中村輝石(ICRR)

2021/03/24

第7回極低放射能技術研究会

はじめに

- ・公募研究(11月~)に採択いただき、ありがとうご
 ざいます
- ・ミグダル観測はBGを減らすというよりは信号をエンハンスするという方向性です
- ・近年では世界的に注目されているトピックかと思います
- ・自身のAXEL、NEWAGEの経験と技術を生かして ミグダル観測にこぎつけたいと思っています

PTEP

・でました!

Detection capability of the Migdal effect for argon and xenon nuclei with position-sensitive gaseous detectors 3

Kiseki D Nakamura 🖾, Kentaro Miuchi, Shingo Kazama, Yutaro Shoji, Masahiro Ibe, Wakutaka Nakano

Progress of Theoretical and Experimental Physics, Volume 2021, Issue 1, January 2021, 013C01, https://doi.org/10.1093/ptep/ptaa162
Published: 09 November 2020 Article history ▼

👃 PDF 🛛 💵 Split View 🛛 🎸 Cite 🎤 Permissions 🛛 < Share 🔻

Abstract

The Migdal effect is attracting interest because of the potential to enhance the sensitivities of direct dark matter searches to the low-mass region. In spite of its great importance, the Migdal effect has not been experimentally observed yet. A realistic experimental approach towards the first observation of the Migdal effect in the neutron scattering was studied with Monte Carlo simulations. In this study, the potential background rate was studied together with the event rate of the Migdal effect by a neutron source. It was found that a table-top-sized $\sim (30 \ {
m cm})^3$ position-sensitive gaseous detector filled with argon or xenon target gas can detect characteristic signatures of the Migdal effect with sufficient rates (O($10^2 \sim 10^3$) events per day). A simulation result of a simple experimental set-up showed two significant background sources, namely the intrinsic neutrons and the neutron-induced gamma-rays. It is found that the intrinsic neutron background rate for the argon gas is at an acceptable level and some future study of the reduction of the gamma-rays from the laboratory would make the observation of the Migdal effect possible. The background for the xenon gas, on the other hand, is found to be much more serious than for the argon gas. Future works on the isotope separation as well as the reduction of the gamma-rays from the detector and laboratory will be needed before the Migdal effect can be observed for the xenon gas case.

ミグダル観測検討会2020

- ・地下新学術の援助のもと開催(ありがとうございます)
- ・slackもあるので、興味がある人は連絡ください

	Migdal observation investigative workshop 2020 ミグダル観測検討会2020	トップ Top	本研究会について About	プログラム Program	レジストレーション Registration	DAY 2 トーク登録 Submission	連絡先 Contact
	(グダル観測検討会20)20					
- 	本研究会について About						
	1940年代にA.B.Migdalによって計算 を集めています。ミグダル効果は、原 能力が低くて検出されないような低工 なると考えられてます。暗黒物質直接探 までの軽い暗黒物質の探索が可能となっ ないため、今後の低質量暗黒物質直接探	された「 子核反跳(ネルギー(索実験で っており) 索のため	ミグダル効果」が こ伴って低い確率 の反跳原子核につ 『は、エネルギー』 ます。一方、ミグ りにも、ミグダルタ	、近年暗黒橋 で電子が放け いても、ミク 過値を下げた ダル効果自何 効果の観測は	物質直接探索実験に 出される事象です。 グダル効果によって 観測が可能になり、 本はこれまでに観測 重要だと考えられ ⁻	に関連して注目 通常では電離 「検出が可能と 、0.1GeV程度 リされたことが ています。	
	本研究会は、 ミグダル効果の実験的な初 の日程に分け、DAY 1では、Migdal効! 介を中心とします。DAY 1でのトーク DAY 2でその成果を発表をしていただき 対面での深い議論による参加型研究会の を踏み出したいと考えております。] 観測に応 果につい ・質疑を きたいと ^ま こよって	りけた検討 を行う。 てのイントロダク 基にして、様々な きえております。 関連分野の叡智を	ことを目的と ?ションとし 側面から参カ DAY 2では 結集、ミグ?	:します。このため、 て、これまでの取り 加者の皆様にもご材 、なるべく多くの2 ダル効果の初観測は	、研究会を2つ Ω組みなどの紹 検討いただき、 公募トークと、 こ向けた第一歩	
	DAY 2については、講演者を中心に旅費	しの補助た	が可能です。申しì	込み時に希望	してください。		

ミグダル観測検討会2020

- DAY1でイントロ、 DAY2で議論
- ・実験+理論の研究会

	座長:中村輝石	
時間	タイトル	発表者
10:30-10:50	Migdal効果の現状~DAY1のおさらい~	身内 賢太朗 (神戸大)
10:50-11:20	液体キセノン2相式検出器での低エネルギーのBG review	水越彗太 (神戸大)
11:20-11:40	136Xeを用いた実験、関連するバックグラウンド	龟井雄斗 (東北大)
11:40-12:00	Migdal効果検出に向けた中性子ビームライン調査	東野聡 (神戸大)
12:00-13:30	休憩 / Break	

セッション 1		座長:中村 輝石
時間	タイトル	発表者
14:00-14:10	はじめに	中村 輝石 Kiseki Nakamura
14:10-14:40	Migdal 効果	伊部 昌宏 Masahiro Ibe
14:40-15:10	Migdal 効果による暗黒物質探索実験	風間 慎吾 Shingo Kazama
15:10-15:30 休憩 / Break		
Session 2 (in English)		Chair:Shingo Kazama
time	content	presenter
15:30-16:00	MIGDAL project	Pawel Majewski
16:00-16:20	Migdal effect detection capability	Kiseki Nakamura
16:20-16:30	休憩 / Break	
セッション 3 座長:身		
16:30-	ミグダル観測に向けて	身内 賢太朗

	座長:伊部昌宏		
13:30-13:55	dark photon mediator模型でのMigdal効果とelectron scattering の比較	中野湧天 (東京大)	
13:55-14:20	The Migdal effect in semi-conductors	庄司裕太郎 (ヘブライ大)	
14:20-14:40	(飛込講演)Notes on Inverse Primakoff Scattering of Axions	永田夏海 (東京大)	
14:40-15:00	14:40-15:00 休憩 / Break		
	座長:風間慎吾		
15:00-15:25	Migdal効果探索のためのCF4ガスマイクロTPCを用いた中性子ビー ムにおける背景事象の評価	島田拓弥 (神戸大)	
15:25-15:50	高圧キセノンガスTPC	吉田将 (京都大)	
15:50-16:10	アルゴンガス検出器による2クラスター検出デモンストレーション	池田智法 (京都大)	
16:10-	議論	中村輝石 (ICRR)	
	おわりのことば	関谷洋之 (ICRR)	

Migdal effect

- Suddenly movement of nuclei --> additional ionization/excitation (low probability)
- First raised by Migdal 1939
- Calculated for nuclear recoil case to apply DM search analysis (JHEP 03 (2018) 194, arXiv:2011.09496)

Migdal for DM search analysis

- Nuclear recoil + Migdal effect
 - --> observable energy increase
 - --> low-mass sensitivity increase
- Understanding followings are important
 - Migdal effect
 - electron BG (S2 only)
 - detector response for NE+ER

from Kazama

Migdal analysis

EDELWEISS (Germanium): "Searching for low-mass dark matter particles with a massive Ge bolometer operated above-ground", arXiv:1901.03588

<u>CDEX-1B (Germanium)</u>: "Constraints on Spin-Independent Nucleus Scattering with sub-GeV Weakly Interacting Massive Particle Dark Matter from the CDEX-1B Experiment at the China Jin-Ping Laboratory" arXiv:1905.00354

LUX (Xenon): "Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data", arXiv:1811.1124

XENON1T (Xenon): "A Search for Light Dark Matter Interactions Enhanced by the Migdal effect or Bremsstrahlung in XENON1T", arXiv:1907.12771

<u>SENSEL (Si)</u>: "SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD", arXiv:2004.11378

	CDEX-1B	EDELWEISS-SURF	LUX	XENON1T	SENSEI
Detector	Ge (charge-only) No ER/NR discri.	Ge (heat-only) (above ground)	LXe TPC (S1-S2)	LXe TPC (S1-S2, S2-only)	CCD (Si) (charge-only, 135 K)
Size	939 g	33.4 g	118 kg	~1.3 ton	~2g
Exposure	737.1 kg day	0.03 kg day (1-day blind, 5-days unblind)	13,775 kg day	S1-S2: 1 ton year S2-only: 22 ton day	~20 g day
Threshold	160 eVee	60 eVee	~1 keVee	S1-S2: ~1 keVee S2-only: 186 eVee	O(1) eVee (詳細不明) (1,2,3,4 e-)

Is Migdal really occur ?

from Pawel

- [1] A. Migdal Ionizatsiya atomov pri yadernykh reaktsiyakh, ZhETF, 9, 1163-1165 (1939)
- [2] A. Migdal Ionizatsiya atomov pri α i β raspade, ZhETF, 11, 207-212 (1941)
- [3] E. E. Berlovich et al., Investigation of the "jolting" of electron shells of oriented molecules containing ³²P, Sov. Phys. JETP, Vol. 21, 675 (1965)
- [4] M.S. Rapaport, F. Asaro and I. Pearlman K-shell electron shake-off accompanying alpha decay, PRC 11, 1740-1745 (1975)
- [5] M.S. Rapaport, F. Asaro and I. Pearlman L- and M-shell electron shake-off accompanying alpha decay, PRC 11, 1746-1754 (1975)
- [6] F. Boehm and C. S. Wu Internal Bremsstrahlung and Ionization Accompanying Beta Decay, Phys. Rev. 93, Number 3, 518 (1954)
- [7] C. Couratin et al. , First Measurement of Pure Electron Shakeoff in the β Decay of Trapped ⁶He⁺lons, PRL **108**, 243201 (2012)
- [8] X. Fabian et al., Electron Shakeoff following the β^+ decay of Trapped ¹⁹Ne⁺ and ³⁵Ar⁺ trapped ions, PRA, **97**, 023402 (2018)

Migdal observation experiments

- As far as I know, two ideas are ongoing
 - different approach: complementary
- 1. MIGDAL collaboration
 - search for events where NR and ER start at the same vertex
 - use very low pressure gaseous detector (CF4 50torr)

- 2. Our idea
 - search for NR events associated with deexcitation X-ray as a second cluster
 - use position sensitive gaseous detector (Ar 1atm/Xe 8atm)

Migdal signal (Geant4)

- after "cluster num == 2" selection
- mono-energetic cluster-B
- cluster distance is consistent to X-ray absorption length

Neutron BG (Xe 8atm)

- neutron --> gas target only
- dominant BG:
 - gamma-rays from ¹²⁹Xe (inelastic)
 - gamma-rays from ¹³¹Xe (capture)
- ¹³⁴Xe, ¹³⁶Xe selection is needed by enrichment

from Kamei

Gamma ray BG

Too much BG exist for the simple constitution

2-cluster demonstration

 u-PIC and EL readout can be used for a position sensitive gaseous detector

CF4 0.1atm 400um-pitch 565keV neutron beam: NR+NR

from Shimada

from Ikeda

Xe 4atm 1cm-pitch 662keV gamma (137Cs): ER+ER

from Yoshida

Schedule

- 1st neutron beam test (2021)
 - confirm gamma-ray BG
 - inelastic scattering of 129Xe --> check the consistency
 - (n,gamma) at chamber / laboratory --> input for shielding
 - measure quenching factor for 1atm Ar / 8atm Xe
 - for NR signal expectation
- 2nd neutron beam test (2022?)
 - install neutron shield
 - observation by Ar
- 3rd neutron beam test (2023?)
 - use 136Xe enriched xenon
 - observation by Xe

Detector for 1st beam test

- 16cmφ×16cmの検出領域(168ch)
- ・中性子BGとquenchingの測定
- 今年度はエレキと光センサを準備

- 竹田さんの協力のもと、神岡で試験機組立の場所(電源 も)を確保してもらっていた(Lab-A)
- ・自分が異動になったので、異動先で作ることにした

Outlet-5: 伊藤さんのAICHAMと中村さんのミグダル実験用に設置。

キセノンの同位体濃縮

 134Xeや136Xeは非 弾性散乱や中性子捕 獲をしない

貴研究施設における線源の需要について 🤉 🖉 🛛 トレイ× 1 東大× kn ×

saito To kiseki, Hidetomo, 中村, shogen.hideki, miyata.yoko ▼ 東京大学宇宙線研究所 神岡宇宙素粒子研究施設

いつもお世話になっております。<mark>イーエナジ</mark>ー斉藤です。 ご無沙汰しております。

中村様

実はお願いがあり、この度は連絡させていただきました。

私共の親会社である双日が代理店をしております仏Orano社(旧AREVA)では 保有している遠心分離の技術を活用し、様々な種類の安定同位体を製造し供給することを計画しています。

対象分野としては、核医療(診断、治療)、工業用(半導体、量子コンピュータ、NDAその他)、基礎研究用(素粒子物理学等)がありますが、 その中に「カムランド禅」で多量に使用される予定のキセノン136もあります。 我々はOranoより、これら安定同位体の販売先候補について調べる様に依頼されており、 キセノン136をカムランド禅向けに供給することや、JAEA殿内で基礎研究を担っておられる部署にその他の同位体を紹介する可能性が無いかに 聞心を持っております。

そこで、中村様の研究室もしくは共同研究をされている研究施設のなかで、上記線源のについて興味をお持ちの部署があれば 一度ご紹介させていただき、現在の需要についてもお伺いしたいのですが、お時間頂くことは可能でしょうか。

製品の詳細に関しては、現在Oranoの窓口として実務レベルでのやりとりをしております 双日パリ店の庄源と宮田からお話をさせて頂ければと思います。

突然の連絡となり恐縮ですが、もし情報をお持ちでしたらお力添えいただけますと恐縮です。

ご検討のほど何卒よろしくお願い致します。

- 〒105-0003 東京都港区西新橋1-6-11(西新橋光和ビル2F) Tel: 03-6858-4856 Fax: 03-6858-4831 Mobile: 080-2013-1340 E-mail: <u>saito@e-energy.co.jp</u> URL https://www.e-energy.co.jp
- 引き続き連絡をとり、
 3rd stepへ

- ・3/9にイーエナジーから濃縮について打診
 - 神岡にある線源について問い合わせをして、仲良くしてもらった会社

3月9日(火) 15:34 🕁 🔦 全員に返付

まとめ

・ミグダル効果

- ・ 軽い暗黒物質探索の解析に重要
- 中性子ビームで測定できると嬉しい
- ミグダル観測検討会を開催

・ビーム実験

- 2-cluster事象を選ぶ方針
- 8気圧XeのTPCを想定
- ・シミュレーションを進めてきた(PTEP 013C01 (2021))
- 1st stepとして中性子BGとquenchingの測定を目指す
- 検出器制作中

MIGDAL collaboration

- Configuration to search NR+ER
 - low pressure (CF4 50torr)
 - optical readout
 - DT / DD neutron source
 - dedicated collimator

NR captured in the OTPC system at UNM by D. Loomba et al.

active

volume

from Pawel

MIGDAL collaboration

- Merit
 - low BG for NR+ER from same vertex
- Difficulties
 - find out from a lot of single scattering BG
 - exposure

Our idea

- Situation
 - Migdal ionization (K-shell) --> Migdal electron and hole
 - X-ray by de-excitation
- Feature
 - two cluster (in the gaseous medium)
 - cluster-B is fixed energy
 - --> position sensitive gaseous detector

Neutron beam

- Neutron beam at AIST
 - interaction: ⁷Li(p,n)⁷Be
 - energy: 565keV (on face)
 - flux: 1000 /s/cm² (at 1m)

neutron beam lines in Japan			from Higashino		
facility	energy	beam type		flux	
RANS	7MeV (Be(p,n)B)	pulsed b	beam	10^12/s @Be	
KUANS	~1.6MeV (Be(p,n)B)	pulsed beam		?	
AIST	24keV- 40MeV	DC bea (-> pulse	m ed beam ?)	1000 /s/cm2 @1m	
KEK	15MeV (DT)	DC bea	m		

- "inelastic" effect is seen a little
 - due to transferred energy ($\Delta E = Ee + EnI$)
 - Take into account it to the Geant4 simulation

Migdal electron

- For K-shell of Xe
 - typically 10keV
 - shape is like exponential

cluster A

Ar/Xe

e⁻

cluster B

3.de-excitation X-ray

4.de-excitation electron $(E_{nl} - E_{dex})$

 (E_{dex})

1.nuclear recoil

 (E_{NR})

2.Migdal electron (E_e)

Ar/Xe

Neutron BG (Ar 1atm)

- neutron --> gas target only
- dominant BG : neutron multiple scattering
- cluster distance distribution is different to signal

Existing gas detector

- Argon target (1atm)
 - readout: u-PIC(MPGD) with 400um pitch
 - NEWAGE's technique
 - no inelastic scattering with neutron
- Xenon target (8atm)
 - readout: EL photon with 0.75~1cm pitch
 - AXEL's technique
 - good energy resolution (~5%)
- --> ~1000 ev/day is expected

target	Ar 1atm	Xe 8atm
K-shell energy	4keV	30keV
absorption length	2.95cm	2.19cm
fluorescence yield	0.14	0.9
event rate	603 ev/day	975 ev/day

Migdal signal (Geant4)

- after "cluster num == 2" selection
- mono-energetic cluster-B
- cluster distance is consistent to X-ray absorption length

Neutron BG (Ar 1atm)

- neutron --> gas target only
- dominant BG : neutron multiple scattering
- cluster distance distribution is different to signal

Gamma ray BG

• Too much BG exist for the simple constitution

Idea of BG reduction

