「第七回極低放射能技術」研究会

D01：極低放射能測定における μ－TPCを用いた表面アルファ線イメージ分析装置の開発

東大宇宙線研 \rightarrow 東京理科大（4月から）伊藤博士

1．はじめに

－地下実験のための検出器は「極限まで少ない不純物 + 「大型化」を要求。綺麗な素材確保•生成は確立 れてきた。
－いくら材料自身が綺麗なのにも関わらず，空気中に いておくだけでラドン由来のPoが材料表面に付着汚染される。
－Poは表面数ミクロンほど埋め込まれる。ウラン系列 であるPb－210が半減期22年なので，その娘核のPo－ 210が5．3 MeVのa線を常に放射するようになる。
－Geなどの全量試験で，試料表面が汚染されていた場合，過小評価する可能性がある。そのため，表面アル ファ線分析は独立的に重要な極低BG測定手法である。
－表面汚染イメージが得られると構造体のどの部品に問題かあるか明らかになる。

2．a線イメージ分析装置
Drift plate（Cu）
Alpha－ray Imaging Chamber（AICHAM）
NIM A 953 （2020） 163050.

Upward

2．a 線イメージ分析装置

Alpha－ray Imaging Chamber（AICHAM） NIM A 953 （2020） 163050.

Po－210線源銅板 α 線汚染分布

Cu mesh

- a線の発生点をplotすると穴の形が現れる。
- 試料由来のa線汚染分布を得られることを実証した。
- 端に線源を取り付ければサンプル測定と同時にガス状態をモ二ターできる

3．最近のイメージ分析
－2018年から安定運用を開始。これまで多くのグループ から測定依頼を受けている。
－銅メッシュの上にサンプルを載せ2週間～1ヶ月待てば， アルファ線のエネルギー分布と，発生位置のイメージ が得られる。

SK－Gdのための硫酸Gd測定 のためのRa吸着ディスク

PICOLON実験におけ るテフロンシート

Hyper－KにおけるPMTガラス 中性子コンソーシアムにおけ サンプル 3 種類同時測定

るフランジ窓ガラス測定

Shefield Univ．

銅メッシュ付きプリント基板

3．最近のイメージ分析
AXELグループのMPPC（使用済）を測ってみた

－細かい目の銅メッシュを使って，6mm x 7mmの MPPCを乗せて測定を可能にした。
（メッシュ開口率：48．6\％，eff．calib済み）
－素子SiPMは綺麗だと思っていたんだが，面裏どちらも汚い。1ので同じレベルのa線表面汚染がわかった。

Anode（cm）

Anode（cm）

3．最近のイメージ分析

ACCEPTED MANUSCRIPT

Development of highly radiopure $\mathrm{NaI}(\mathrm{Tl})$ scintillator for PICOLON dark matter search project ఠ

K Fushimi ㅆ，Y Kanemitsu，S Hirata，D Chernyak，R Hazama，H Ikeda，K Imagawa， H Ishiura，H Ito，T Kisimoto ．．．Show more

Author Notes
Progress of Theoretical and Experimental Physics，ptab020，
https：／／doi．org／10．1093／ptep／ptab020
Published： 16 February 2021 Article history \mathbf{V}

Fig． 5 Left：The energy spectra inside（red）and outside（black shaded）the sample region． Right：The distribution of emitting points of alpha－ray events．The ESR sheet is placed in the sample region．
$<1.77 \times 10^{-3}$ alpha／hr／cm ${ }^{2}$（ 90% C．L．）．

今年度は他にもいくつかのグループから サンプル分析を請け負いました。

4．課題と改善計画

課題点

－ガス中の放射性ラドンからの下向きアルファ線 （6MeV）は，カット仕切れない。
－μ－PICを置くプリント基板からのアルファ線が壁際の雑音になっていることを確認した。
－目標感度 $10^{-4} \mathrm{a} / \mathrm{cm} 2 / \mathrm{h}$

感度改善のための計画

1．冷却活性炭の実装… ガス内ラドンを減らす
2．プリント基板由来のa線を防ぐためにマスク
3．有感領域における体積を減らす… つまりドリフト長を短くする
4．アルファ線入射のための窓を広げる
※他にもアイデアはあるが，まず優先して上4つを実施

- DAQエレクトロニクスの改良．
- 飛跡解析アルゴリズム改良。
- さらに不純物のない $\mu-P I C+フ ゚ リ ン ト$ 基板へ据え変え．

4．課題と改善計画
1．冷却活性炭の実装
2．プリント基板由来のa線を防ぐためにマスク
3．有感領域における体積を減らす
4．アルファ線入射のための窓を広げる

1．冷却活性炭の実装

- 神岡施設の活性炭と冷凍器を確保。
- 4月に配管実装は完了し，－100度に冷却してガス循環系の導入完了。
－冷却活性炭を実装したことで，Rn－a線は1／3程度減少した。今回の活性炭は「ダイヤソープ」

2．プリント基板由来のa線を防ぐためにマスク

プリント基板が露出している領域（緑）を カプトンテープでマスクした

Energy（MeV）

マスクしたら有意に端のa線 は減ったが，
隠せきれていない領域も残つ ていることも確認できた。

4．課題と改善計画
1．冷却活性炭の実装
2．プリント基板由来のa線を防ぐためにマスク
3．有感領域における体積を減らす
4．アルファ線入射のための窓を広げる

3．有感領域における体積を減らす

－フィールドケージの高さを低く（まずは半分の15cm）
－サンプルからの5MeV a線は8cm走るの で測定には十分な仕様。

4．アルファ線入射のための窓を広げる

15 cm

－サンプル領域拡張（入射窓を広げる）は感度 ［a／cm²／hr］を改善する。
－これまで端からのa線によってサンプル領域拡張 は制限されていた。

- $10 \times 10 \mathrm{~cm}^{2} \rightarrow 15 \times 15 \mathrm{~cm}^{2}$（面積比 2.25 倍）
- ドリフトプレートは製作済み。

4．課題と改善計画

マフィールドケージを入れ替え作業。有効面積あたりの体積は半分
\rightarrow ラドンの量も半分になると期待

今後，

- 真空漏れチェック
- 放電耐性のチェック
- 信号／雑音レベルの確認
- 長期安定運転のチェック
- アルファ線エネルギー較正
- 有効面積拡張の検証
- 感度•性能評価の実施
- 2021年度 夏から新システムでの サンプル分析を運用を目指す

－表面a線イメージ分析は，全量試験では気づかない表面汚染に対して有効であり，独立的に重要な極低BG測定手法である。得られた画像から構造体のどの部品に問題かあるか明らかにできる。
－μ－TPCを用いた表面a線イメージ分析装置（AICHAM）は，Iow－a μ－PIC を実装したことで，感度～ $10^{-3} \alpha / \mathrm{cm}^{2} / \mathrm{hr}$ を達成した。
－様々な実験グループのサンプルを測定し，その度に試行錯誤で手法を確立していきました。
－並行して装置改善の取り組みを進め，フィールドケージの据え変えが完了。今後，運用に向けてリークチェック，放電チェック，性能評価を予定している。

