180mTaの半減期測定のための HPGe検出器のy線検出効率の評価

阪大理, 阪大RCNP^A, <u>佐久間幹人</u>,吉田斉,野田健太,安田圭吾, 高草元,白井竜太,西川隆博,梅原さおり

HPGe検出器

・キャンベラ社製p型同軸HPGe検出器を用いた ・設計図によるHPGe検出器の断面図を図2-1に示した

γ線源

・測定には鉛によってコリメートした¹³³Ba線源を用いた(図2-2)

50 mm ¹³³Ba

_4 mmф

30 mm

8

3

研究目的

・^{180m}Taの半減期測定のためにHPGe検出器のγ線検出効率を評価する

方法

・¹³³Ba線源によるγ線をHPGe検出器に当てる実験を行い、その様子 をモンテカルロシミュレーション(MC)によって再現、比較する

180mTa

- ・天然に存在する唯一の核異性体 ・β崩壊やEC崩壊によって9+から6+への遷移
- ・半減期がまだわかっていない
- →下限値は1.5×10¹⁹年
- ・崩壊の際に93.3 keVから350.9 keVまでのγ線 を3本ずつ放出する
- →¹³³Baの81 keVと356 keVのy線を用いてHPGe 検出器の検出効率を評価

図2-1. 設計図によるHPGe検出器

電極軸の影響

解析 ・それぞれの実験を元に、場所ごとの計数率を調べた

MC(モンテカルロシミュレーション)

・実験から得たグラフをMC上で再現し、重ね書きした(図4-1, 図4-2) ・HPGe検出器内部のGe結晶や固定リングなどの内部構造の場所や大 きさ、不感層の厚さなどを変数として調整した結果、実験を再現 することができた

実験

- ・計数率の垂直方向と水平方向の場所依存性を調べる2つの実験を行った 1. 水平方向
- ・線源を検出器の上に乗せ、数mm間隔でずら して測定した

2. 垂直方向

・線源を検出器の横から当て、アクリル板を 用いて数mm間隔で上にずらして測定した (図3-1)

図3-1.¹³³Ba線源とアクリル板

分析方法 ・MCによる実験の再現度を定量的に評価するため、EXP(実験)/MC の値について調べた。

HPGe検出器

・実験値を最もよく再現するMCに用いたHPGe検出器の内部構造 のうち、設計図と異なるものを以下にまとめた(図6-1)

- ・81 keVの計数率で0.1未満(Maxの10%)の測定点の結果は測定 に与える影響が小さいため無視した
- ・図4-1の32mmの計数率はEXPとMCの差が大きいので除外した →EXPとMCのGe結晶の直径が1mm程ずれている可能性があり、 81 keVにおける半値幅の差から、除外による影響は1~2%と考 えられる

EXP/MC		平均	標準偏差			
水平方向	81 keV	1.009	0.091			
	356 keV	0.994	0.119			
垂直方向	81 keV	0.989	0.108			
	356 keV	1.050	0.089			
表 5-1. EXP/MC の平均と標準偏差						

図6-1. MCによるHPGe検出器

図6-2.¹⁸⁰Ta試料

100 mm

6

検出効率

- ・実際の^{180m}Ta半減期測定は、図6-2のような¹⁸⁰Ta試料を用いて行われる
- ・MC上で¹⁸⁰Ta試料の形と、^{180m}Taの崩壊によって放出される6本のγ線を再現し、その 検出効率を求めた
- ・MCによる統計誤差は0.7%以下で あるため無視した

¹³³ Ba將	泉源強度の誤差が約 3% ある
ため、	総じて <mark>17%</mark> の誤差とした

ニネルギー(keV)	検出効率 (%)
93.3	0.22 ± 0.04
103.6	0.34 ± 0.06
215.3	2.38±0.40
234	2.56 ± 0.44
332.3	2.86±0.49
350.9	2.84 ± 0.48
表6-3 ^{180m} Ta	

-30	-20	-10	0	10	20	30		-35	-25	-15	-5	5	15	25	35
				ţ	易所 ()	mm)							場	局所 (mm
図 5-2. 水平方向						図 5-3. 垂直方向									

測定について

・線源の強度の誤差や手作業での測定による誤差などが、検出効率 にどの程度影響を与えるか詳しく調べる必要がある

検出効率について

・MCで実験をより正確に再現することにより、検出効率の誤差10% 以下を目指す

さらに検出効率を上げるために

・Ge結晶の直径を、設計図での65mmに対し、MCでの61mmでは小 さく見積りすぎていたため、正確に調整する ・検出効率の回転対称性についても確認していく ・不感層を直方体型で定義しているが、実際には角が丸まっている。 と考えられるため、その曲率を求める必要がある