レーザーを用いた水中Gd³⁺イオン発光 分光と可搬型濃度モニターへの応用

日本原子力研究開発機構^A, 東京大学大学院工学系研究科^B, 東京大学宇宙線研究所^C

岩田 圭弘

関谷洋之^C, 伊藤主税^A 「第9回極低放射能技術」研究会 Zoom(オンライン) 2024/02/07 (Wed.)

Outline

- SK-Gd実験におけるGd³⁺発光BGの可能性
 * 宇宙線ミューオン起因の波長312 nm発光
- レーザー誘起発光を用いた水中Gd³⁺発光分光
 * 陰イオンの影響、励起スペクトル、キャリブレーション
 * SK-GdにおけるGd³⁺発光起因BGの概算
- ・可搬型Gd濃度モニターへの応用
 - * 可搬型レーザー光源(固定波長266 nm)
 - * Gd³⁺発光のファイバー伝送
- ・まとめ、今後の予定

SK-Gd実験におけるGd³⁺イオン発光

- 宇宙線µ[±]起因のチェレンコフ光(λ < 300 nm)が Gd³⁺を励起 ⇒ 長寿命(τ ~ ms)の波長312 nm発光
- PMT有感波長域に含まれ、Gd起源のため除去できない
- ・BG評価: <u>吸収率、発光/吸収比、発光寿命</u>が必要

[1] W.T. Carnall, "The absorption and fluorescence spectra of rare earth ions in solution", Handbook on the Physics and Chemistry of Rare Earths 3 (1979) pp. 171-208. [2] V.A. Dzuba et al., Physical Review A 66 (2002) 032105.

[3] J-C.G. Bünzli, S.V. Eliseeva, "Basics of Lanthanide Photophysics", Lanthanide Luminescence (2010) pp. 1-45.

[4] S. Lis et al., Journal of Alloys and Compounds 323-324 (2001) 125-127.

水中のGd³⁺発光について • ⁶P_{7/2} → ⁸S_{7/2} の312 nm発光と、水分子 ⁶D, のOH振動への緩和(クエンチ)が競合: ≣Ì⁰I၂ 1/т_{оbs} = 1/т_{rad} + 1/т_{он}(т_{оbs}:観測寿命) 吸収率: モル吸光係数ε [M⁻¹·cm⁻¹] ⁻⁶P_{7/2} ⇒ 共鳴(⁶P₁, ⁶I₁, ⁶D₁)でのε値は文献 励起 0-H vibrations あるが^[1,2]、半値幅及び非共鳴での ε値は文献なし 312 nm rac • <u>発光/吸収比(= T_{obs}/T_{rad})、発光寿命</u>T_{obs} ⁸S_{7/2} Gd³⁺ ⇒ T_{rad} = 10.9 ms(計算値)^[1] 水の吸収大で 300 nm $\tau_{obs} = 2.3 \text{ ms}^{[3]}, 1.48 \text{ ms}^{[4]}$ MOLAR ABSORPTIVITY これらは無視 6 (ともに過塩素酸中の値で ⁶G 硫酸Gd aq.のデータなし) 38

波数(波長の逆数) [×10³ cm⁻¹] 4/23

評価に必要なGd³⁺発光データ

- <u>吸収率</u>: モル吸光係数εの波長依存性
 ⇒ 共鳴(⁶P」, ⁶I」, ⁶D」)での半値幅、非共鳴での値
- <u>発光/吸収比(= T_{obs}/T_{rad})、発光寿命</u>T_{obs}
 ⇒ T_{rad} = 10.9 ms(計算値)のみ → この値を利用
 T_{obs} = 2.3 ms, 1.48 ms(過塩素酸) → 硫酸aq.での値
- 分光測定の内容 ①陰イオンの影響(266 nm): SO₄²⁻, NO₃-濃度 vs. T_{obs} ②⁶D」付近(245-255 nm) 250 300 nm MOLAR ABSORPTIVITY 3 水の吸収大 6 の励起スペクトル → 共鳴の半値幅、 6**G**, ⁶D 非共鳴ε、Tobs 40 38 36 CM-1 x 103 ⇒ SK-GdにおけるBG概算 波数(波長の逆数) [×10³ cm⁻¹]

5/23

Gd試料

 硫酸Gd・8H₂O(和光純薬93-6407)を超純水に 溶かしてGd重量濃度を0.01, 0.03, 0.1%に調製 ⇒ 0.1% Gdで0.006374 mol/l

以下は、①陰イオンの影響評価用

- SO₄²⁻濃度依存性の測定では、市販の硫酸Cs を追加し、Gdのモル濃度が0.1% Gd相当、 SO₄²⁻のモル濃度が0.5, 1.0, 2.0 mol/l で調製
- NO₃⁻濃度依存性の測定では、市販のGd標準液 (1,000 ppm Gd in 1 mol/l 硝酸)を微量追加し、 NO₃⁻のモル濃度が10⁻⁶, 10⁻⁵, 10⁻⁴ mol/l で調製

①測定セットアップ(陰イオンの影響)

 • 266 nm励起 ⇒ 312 nm発光をフィルター・分光器で波長 分離し、PMT信号をオシロで観測

①測定セットアップ(陰イオンの影響)

 266 nm励起 ⇒ 312 nm発光をフィルター・分光器で波長 分離し、PMT信号をオシロで観測

①SO₄²⁻, NO₃⁻イオンによる影響(0.1% Gd)

- SO₄²⁻によるクエンチングはほぼ無視でき、寿命~2-3 ms
- NO₃⁻は、~10⁻⁷ mol/l(~6 ppb)からGd³⁺発光寿命に影響
 ⇒ 水道水に溶かすと発光寿命 ~ 100 µs ^{文献[5]と同様}
 ([NO₃⁻]相当 ~ 10⁻⁵ mol/l ~ mg/l < 基準値10 mg/l)

②測定セットアップ(励起スペクトル)

- 励起波長245-255 nmで、Gd³⁺の⁶D」準位をターゲット
- レーザー線幅: <0.1 cm⁻¹(0.0006 nm at 250 nm)
 波長計Accuracy: 0.005 nm

②測定セットアップ(励起スペクトル)

• BBO結晶: 490-510 nm → 245-255 nm

②励起スペクトル(0.1% Gd)

- 0.1% Gd、励起波長245-255 nmで312 nm発光観測
 f(t) = a*exp(-(t-t₀)/т)+c fit ⇒ 発光量|a| × レート1/т
- (左)共鳴でのスペクトル幅(FWHM)~100 cm⁻¹
 共鳴で発光量2桁増加 ⇒ 非共鳴 ε~0.001 M⁻¹·cm⁻¹
 (右)寿命T~3 ms程度で波長依存無し ^(<312 nmで一定とする)

[6] Y. Iwata et al., Prog. Theor. Exp. Phys. 2022 (2022) 123H01.

②0.01-0.1% Gdで、Gd³⁺発光のオシロ波形

- 共鳴波長では、0.01%でも観測可
- ・試料中の不純物が観測寿命T_{obs}の
 系統誤差要因となりうるため、キャリ ブレーション縦軸は発光量|a|・T_{obs}
 よりピーク電圧|a|が良い^[6]

[7] S. Fukuda et al., Nucl. Instrum. Meth. A 501 (2003) 418-462.
[8] R.C. Smith, and K.S. Baker, Appl. Opt. 20 (1981) 177-184.
[9] K. Abe et al., Nucl. Instrum. Meth. A 737 (2014) 253-272.

シミュレーション概要

• SKのInner Detector (ID)で、水及びGd³⁺の吸収を考慮

水タンク	・直径33.8 m、高さ36.2 m(ID)[7]	
Cherenkov	・生成位置はタンク内一様	ー & DMT咸 亩 左 孝 虐
	・鉛直下向きに対して、 $\theta = \cos^{-1}(1/1.33)$, CT WT 芯皮と つ 思
	・波数12500-50000 cm ⁻¹ で一様(200-800 nmで∝1/ λ ²)	直径33.8 m (ID)
水の吸収長	・文献値 [8] → <mark>次頁</mark>	
Gd濃度	・0.01%, 0.03%, 0.1%の3通り	
Gd ³⁺ の吸光度	・別表のとおり → <mark>次頁</mark>	
Gd ³⁺ 発光	・Gd ³⁺ 吸収後、発光は ⁶ P _{7/2} → ⁸ S _{7/2} の312 nmのみ	Gd ³⁺ 発光を
	・ $\tau_{rad} = 10.9 \text{ ms}$ とし、 $\tau_{obs} = 1, 3, 10 \text{ ms}$ の3通り	
検出条件	・Cherenkovは水・Gd ³⁺ に吸収されずタンク壁面に到達	ε e
	・Gd ³⁺ 発光はCherenkovがGd ³⁺ に吸収されて発光したもの	
	が、水に吸収されずO-Hクエンチもせずに壁面に到達	
	(Gd ³⁺ による再吸収も考慮)	水による
PMT量子効率	・SKデータ [7]	●
規格化	・Cherenkov光の検出量を10 ⁵ peとして、Gd ³⁺ 発光の検出	
	量を規格化 [7], [9]	
1		- 14/°

Gd³⁺分光データと減衰長

波長200-800 nmの範囲で、Gd³⁺は⁶P」,⁶I」,⁶D」を考慮

Level	Energy	Molar attenuation coefficient ε	FWHM	
	[cm ⁻¹]	$[M^{-1} \cdot cm^{-1}]$	[cm ⁻¹]	
⁶ P _{3/2}	33262	$0.15 \times 4/8 = 0.075$		
⁶ P _{5/2}	32680	$0.15 \times 6/8 = 0.1125$		
⁶ P _{7/2}	32084	0.15		
⁶ I _{7/2}	35920	0.29		
⁶ l _{9/2}	36258	0.92		
⁶ I _{11/2}	36536	1.38		
⁶ I _{13/2}	36576	1.22	100	
⁶ I _{15/2}	36710	3.41	100	
⁶ I _{17/2}	36337	2.00		
⁶ D _{1/2}	40444	$0.1 \times 2/10 = 0.02$		
⁶ D _{3/2}	40694	$0.1 \times 4/10 = 0.04$		
⁶ D _{5/2}	40857	$0.1 \times 6/10 = 0.06$		
⁶ D _{7/2}	40599	$0.1 \times 8/10 = 0.08$		
⁶ D _{9/2}	39508	0.1		
DC	32084-50000	0.001		

赤四角は分光測定データから推定、他は文献 or 仮定

計算結果^[6]: Gd³⁺発光の時間分布(寿命3 ms)

- 0.01 → 0.03%で約1.6倍
- 0.03 → 0.1%では微増で、
 Gd³⁺発光の再吸収に伴う
 クエンチングの影響
- BG <0.1 counts/µs で SK-Gdへの影響は小さい

[10] K. Abe et al., Nucl. Instrum. Meth. A 1027 (2022) 166248.

可搬型Gd濃度・発光寿命モニターの開発

- SK水循環ライン^[10]にレーザー照射及び発光検出ポートを 設けて、Gd³⁺発光信号(信号強度、発光寿命)をモニター ⇒サンプリング不要で、コンタミの影響なし
- 可搬型のレーザー光源・検出器が必要

Dissolving system

Weighing hopper Circle feeder

可搬型レーザー光源

- 陰イオン影響(Nd:YAG、266 nm)、
 励起スペクトル(色素、245-255 nm)
 測定に使用したレーザーは大型で、
 単相200V電源が必要
- 小型Nd:YAGレーザーMinilite
 ⇒ 可搬だが、非共鳴266 nm

Power Supply: 381x197x365 mm AC100V, 14.5 kg

小型Nd:YAGレーザーを用いたGd³⁺発光測定

- 励起波長266 nmで312 nm発光観測
- 非共鳴波長で励起断面積が小さいため、分光器のスリット を少し広げて(分解能を落として)観測信号量を~20倍に ⇒ 0.01%, 0.03%, 0.1% Gdの発光信号を観測
- フィルターで励起光(266/532 nm)の散乱BGをカット

発光の伝送に使用するファイバー

- レーザー光を集光~ファイバー~コリメートする場合、
 シングルモードファイバー(コア径数µm)を使用し、端面に 集光しビーム径~コア径として、結合効率40-50%程度
- Gd³⁺発光をファイバーに導入する場合、点光源ではなく 高OHのマルチモードファイバー(コア径数100 µm)を使用 ⇒ 長さ2 m at 310 nmで透過率~95%(高OH), 59%(低OH)

ファイバー伝送効率

- 溶液セルとレンズを移動し、レンズ・フィルター間に長さ2mの高OHマルチモードファイバー(両端にコリメータ)
 をはさみ、Gd³⁺発光(312 nm)の信号強度を比較
- 試料:Gd濃度0.5%の硫酸Gd aq.

ファイバー伝送効率

- (赤)ファイバーなし・出力1/45倍、(青)ファイバー伝送
- 伝送効率~1/45×1/6~0.4%
- ファイバー導入の結合効率
 → 大口径コリメータを使用
 (立体角に依存)
- ファイバー出力光の広がり角
 → フィルター直後にPMT
 (フィルターで散乱BG抑制)
- フィルター入射角±15°では
 312 nmの損失小さく、266 nmの
 光学濃度OD > 3(透過率<10⁻³)
 → 広がりを持っていてもOK

Edmund #34-977 中心313±2 nm FWHM 10±2 nm 透過率≧75% OD≧4 (入射角0°)

まとめ、今後の予定

- ・レーザー誘起発光を用いたGd³⁺発光分光
 - * 宇宙線µ[±]起因チェレンコフ光を吸収し、312 nm発光
 - * SO₄²⁻影響なし、ε: 共鳴幅&非共鳴での値を推定
 - * Gd³⁺発光の再吸収等で、<0.1 counts/µs と影響小さい
- ・可搬型Gd濃度モニターへの応用
 - * サンプリング不要で、Gd³⁺発光強度・寿命をモニター
 - * 可搬型光源を準備し、発光のファイバー伝送を確認

・今後の予定

- * Gd³⁺発光の詳細な励起スペクトル ⇒ 精密なBG評価
- * ファイバー伝送効率の改善、モニター仕様詳細の検討