

MIRACLUE実験 ガス検出器による中性子ビームを 用いたミグダル効果の探索

中村輝石(東北大)

for the MIRACLUE collaboration

今回の内容は内山修論になってます そのうちwebに乗る予定ですので、興味のある方は連絡ください

2024/02/07 第9回極低放射能技術研究会

ミグダル効果

- ・原子核が動き、追随できない束縛電子が励起・電離
 - ・量子力学で予言されている(1939,1941 A.B.Migdal)
 - ・α崩壊やβ崩壊に伴うミグダル効果は観測済だが、散乱に 伴うものは未確認
 - α崩壊:Sov. Phys. JETP 21 (1965) 675
 - α崩壊: PRC 11 (1975) 1740-1745
 - α崩壊: PRC 11 (1975) 1746-1754
 - β崩壊: Phys. Rev. 93, Number 3 (1954) 518
 - β崩壊: PRL 108 (2012) 243201
 - β+崩壊: PRA 97 (2018) 023402
- ・暗黒物質探索の解析への応用
 - ・ 原子核反跳に加えて電子反跳事象が追加される
 - ・観測エネルギーが増え、低質量暗黒物質への感度が向上
 - 多数の解析例がある
 - LUX:PRL121(2018)101801
 - XENON1T: PRL123(2019)241803
 - LAr: JHEP11(2020)034
 - 半導体:PRL128(2021)081805
 - COSINE: PRD105(2022)042006
 - SuperCDMS: PRD107(2023)112013
 - DarkSide50: PRL130(2023)101001
 - PandaX-4T:PRL131(2023)191002

散乱による原子核反跳に伴うミグダル効果

- 伊部論文で詳細に計算がある(JHEP03(2018)194)
 - ・暗黒物質探索の解析や、ミグダル効果探索のためのバイブル
- 特徴
 - ・発生確率は電子の運動量移行の2乗に比例
 - 原子核の速度が電離電子より遅い近似から来る。散乱の場合はほぼこの条件を満たす。
 - 励起より電離の方がおきやすい(3桁くらい)
 - 励起は終状態が離散的だが電離は連続的なので
 - 内殻電子が電離される確率は低い
 - XeのK核電子の電離確率はO(10-6)

Xeのミグダル効果の分岐比(a。= 511eV)

(n,ℓ)	$\mathcal{P}_{\rightarrow 4f}$	$\mathcal{P}_{\rightarrow 5d}$	$\mathcal{P}_{ ightarrow 6s}$	$\mathcal{P}_{\rightarrow 6p}$	$E_{n\ell} \; [eV]$	$\frac{1}{2\pi}\int dE_e \frac{dp^e}{dE_e}$			
1s	-	_	_	7.3×10^{-10}	3.5×10^4	4.9×10^{-6}			
2s	-	_	_	1.8×10^{-8}	5.4×10^3	$3.0 imes 10^{-5}$			
2p	-	$3.0 imes 10^{-8}$	6.5×10^{-9}	-	4.9×10^3	1.3×10^{-4}			
3s	-	_	_	2.7×10^{-7}	1.1×10^3	$1.1 imes 10^{-4}$			
$_{3p}$	-	$3.4 imes 10^{-7}$	$4.0 imes 10^{-7}$	-	9.3×10^2	$6.0 imes 10^{-4}$			
3d	2.3×10^{-9}	_	_	4.3×10^{-7}	6.6×10^2	3.6×10^{-3}			
M.lbe. arXiv:1707.07258v5. 2023 励起 雪離									

电触

ミグダル効果の探索

- ・中性子を照射して原子核反跳を起こし、それに伴うミグダル効果を探す
- MIGDAL実験: Astropart. Phys. 151 (2023) 102853
 - 低圧ガス中で原子核+電子の繋がった飛跡を探す
- LXe:arXiv2307.12952
 - M,L殻の電子が電離されるものを探索
 - ・ミグダル効果は見つかってない
 - 液体キセノン中での原子核+電子の再結合がどれくらい起きるか、要調査
 - ・※彼らのビームライン周りのセットアップは参考になりそう
- MIRACLUE実験: PTEP 2021 (2020) 013C01
 - ・ 位置検出器のあるガス検出器で2クラスター事象を探す

MIRACLUE実験

- 実験概要
 - ガス検出器を標的にした中性子ビーム試験
 - ・ミグダル効果に起因する2つのクラスターを信号とする
 - ・キセノン(東北)とアルゴン(神戸)の検出器開発
- ・アルゴン検出器
 - NEWAGEの技術
 - ・ µ-PICによる詳細な飛跡取得
 - 薄型TPCケージ
- ・キセノン検出器
 - AXELの技術
 - EL光によるピクセル読み出し
 - •エネルギー分解能が良い

これまでのビーム試験

- AIST(産総研)
 - 茨城県つくば市(KEKと近い)
 - エネルギー:565keV(24keV~14.8MeVまで可変)
 - フラックス:~1000個/cm2/sec
 - 中性子標準として正確なフルエンスを提供
 - 床がグレーチングになっている
- CYRIC(東北大)
 - ・ 宮城県仙台市(Xe検出器の開発場所と近い)
 - •エネルギー:~10MeV
 - フラックス:~1000個/cm2/sec
 - イオンを加速して水素標的に当てるため、中性子が前方に集中する
- ・直近だと先月にAISTでAr検出器で中性子データを取得!

日付	場所	エネルギー	検出器	目的
2022年3月	AIST	565keV	He3、BGO	AISTの中性子環境測定
2022年4月	AIST	565keV	Xe、Ar	ガス検出器でのデータ取得
2022年12月	AIST	565keV	Ar、BGO	大型Arでのデータ取得
2023年7月	CYRIC	~10MeV	Xe、He3、BGO	CYRICの調査(古いキセノンガス)
2024年1月	AIST	565ke ∀⇒14MeV	Ar、He3、BGO	Arでのデータ取得

キセノン検出器

- TPC
 - ・EL光ピクセル読み出し
 - 168ch 1cmピッチ
- ガス
 「気」にす。
 - ・5気圧キセノン

- 電圧
 - 8kV(GND-cathode)
 - ・ドリフト電場:64V/cm/atm
 - EL電場:1.92kV/cm/atm

中性子ビーム試験

- ・中性子ビーム
 - •場所:AIST
 - ・反応:Li(p,n)Be 反応
 - 2.3MeVの陽子をLilに照射
 - ・エネルギー:565keV@正面
 - フラックス:約1000個/cm²/sec@1m
- ・コリメータ
 - ・ LiF50%添加ポリエチレン
 - 検出器以外の方向に発生する中性子の遮蔽(床や壁での(n,γ)を防ぐ)
- 鉛ブロック
 - 前方から来るガンマ線の遮蔽
 - コリメータ由来の2.2MeV(¹H(n,n'γ))
 - ターゲット由来の478keV(⁷Li(p,p'γ))

中性子フラックスとデータ取得

- ・中性子フラックスモニタ
 - ・陽子の電流モニタ(CI)で時間変化をモニタ
 - 中性子フラックスとの対応は事前にボナー球の測定で求めた
- ・データ取得状況
 - ・4/12はアルゴン検出器へのビーム照射
 - 4/13はキセノン検出器に照射。午前中から徐々にcathode電圧を上げ、8kVで安定してデータ取得。DAQがエラーを吐かずに終了した5つのRUNを解析。DAQのデッドタイムがおおきく、live timeは5%程度だった

解析の流れ

- ・エネルギーの求め方
 - 波形

- ・クラスター数の求め方
 - Hitの位置

エネルギースペクトルの作成
 イベントセレクション(2クラスターかつ片方が30keV)
 ↓
 イベントの数えすぎ・見逃しの見積
 イベントレート

MPPCの1p.e.ゲイン解析

- ・168チャンネルでダークカウントを測定
- 1p.e. のピークが分離できた

ELゲイン補正

- 各チャンネルのELゲインのばらつきを補正
 - ・ガス中に生じるキセノンのKα線(30keV)を使用
 - ・1セル程度に収まるので、セルごとのELゲインの違いを測定できる
 - ・ イタレーション6回くらいで分解能はいいところに落ち着く

クラスター解析

- ・Hitしたチャンネルが隣同士かつ時 間的に波形が重なっている場合に 同一クラスターと判定
 - (x,y)平面:Hitしたチャンネルが離れていれば別クラスター
 - z方向:時間的に波形が重なってい なければ別クラスター

エネルギースペクトル

- ・測定スペクトル
 - 30keVのカット範囲は30±3.5keV
 - ・ livetime割合(エレキは結構かつかつだった)
 - ・ビームON時:1~5%
 - ・ビームOFF時:25%

アクシデンタルの補正:1

- ・別なイベントが1ウィンドウ内でアクシデンタルに生じる場合
 - ・ クラスター数を1大きく判定してしまう(1→2:数えすぎ、2→3:見逃し)
 - ・ドリフト領域(0-100us)より大きい時刻(100-300us)でアクシデンタルを見積もる

測定データ	1クラスター⇒2クラスター	2クラスター⇒3クラスター	補正ファクター
run017(OFF)	0.49%	0.86%	+0.37%
run020(ON)	6.4%	47%	+41%
run022(ON)	10%	42%	+32%
run024(ON)	10%	34%	+24%
run025(ON)	13%	42%	+29%
run028(ON)	8.7%	32%	+25%

アクシデンタルの補正:2

- ・別のイベントがveto領域に生じる場合 ⇒見逃し
 - 通常はveto領域の閾値が超えたらトリガーを出さない
 - 時々vetoに来てもデータを取るモードで動いている(whole-trigger)
 - whole-triggerで取得したイベントの内、vetoにヒットがあるイベント数と、その中で fiducialにクラスターがあるイベント数を調べ、その割合を見積もった

測定結果

- ・イベントレートを補正した2cluster-30keVのエネルギースペクトル
 - 各runで同程度のイベントレートに揃った
 - ・ビームONからOFFを差っ引いた

ミグダル信号モデル生成

- 初期粒子
 - Xe原子核、K殻のミグダル電子、特 性X線、オージェ電子
 - K殻のミグダル電子のスペクトルは伊 部さんの論文の値を使用
- ガス中でのエネルギー損失
 - Geant4で見積もる
 - ・媒質:キセノンガス5気圧
 - 検出器の有感領域内に一様に生成 (中性子の弾性散乱の断面積は十分 小さいので)

M. Ibe, et al., Ancillary files for arXiv:1707.07258v3, https://arxiv.org/src/1707.07258v3/anc

ミグダル信号モデル生成

- 検出器応答
 - ①電離電子とドリフト
 - •W值:22.1eV
 - Fano因子:0.13
 - diffusion(x):0.105cm@1cm
 - diffusion(y):0.030cm@1cm
 - quenching:0.1~1でscan
 - ・ ②ピクセル化
 - ・ ELCCのチャンネルマップと照合し、電 離電子が入るチャンネルを決定
 - ③波形生成
 - ELCC内でEL光を生成し、波形として 出力
 - ⇒データ解析と同様の解析をかけられるようになる

ミグダル信号モデル生成

- ・エネルギースペクトル
 - クエンチングの有無で形状が変化し、2cluster-30keVの感度のあるエネルギー領域が 変わる

- ・イベントレート
 - ・ミグダル効果の分岐比を仮定し、2cluster-30keVのイベントレートを計算
 - 鉛ブロックやSUS容器による中性子の減衰量は手計算

ミグダル効果の探索結果

- ・分岐比の上限値を求める
 - 測定値の90%C.L.上限を求め、信号シミュレーションがどのbinでも超えない最大の分 岐比を上限とした
 - ・クエンチングによって感度のあるエネルギー領域が変わる

	<u> クエンチングなし</u>	クエンチング10%
分岐比の上限値	1.9×10^{-1}	1.8×10^{-1}
理論値との比	3.2×10^{5}	3.0×10^{5}

補正

- シミュレーションと実際の違いを補正する
- fiducial領域
 - ・左上にdeadチャンネル
 - fiducialは125/127倍になる
- ・圧力
 - ・実際は4.7atm(simは5atm)

補正後の分岐比の上限値						
	クエンチングなし	クエンチング10%				
分岐比の上限値	2.1×10^{-1}	1.9×10^{-1}				
理論値との比	3.4×10^{5}	3.2×10^{5}				

系統誤差

- ・検出器の位置精度(±1mm)
- deadチャンネルの補正の誤差
 - 2cluster-30keVのイベントは有限の大きさを持つ
 - ・ (点イベントを仮定するなら123/125倍)
 - Toy-MC有限サイズのイベントを生成し、simではfiducialだがdataではvetoになるイベントの割合を見積もる

クエンチングについて

- SRIM計算によると0.2くらい
- ・低エネルギーのスペクトルには3keV
 あたりに肩 ⇒0.17くらい?
- ・ガスキセノン中でのクエンチング測
 定が必要
 - ・他のエネルギー(10MeV単色中性子)
- 今回は0.1~1.0までのquenchingを scanして分岐比の上限を出した
 - 分岐比上限:0.16~0.30
 - ・理論値との比:2.7~5.0×10⁵

クエンチング	q=0.1	q=0.2	q=0.3	q=0.4	q=0.5	q=0.6	q=0.7	q=0.8	q=0.9	q=1.0
分岐比上限	0.19	0.27	0.20	0.17	0.17	0.16	0.18	0.18	0.30	0.21
理論値との比	3.2×10^{5}	4.5×10^5	3.4×10^5	2.8×10^5	2.8×10^5	2.7×10^{5}	3.0×10^5	3.0×10^{5}	$5.0 imes 10^5$	3.4×10^5

ガンマ線バックグラウンド

- 同時に測定したBGOのレートから、ガンマ線バックグラウンドが支配的
- ・キセノンのデータ中に確認できるピークの削減方法
 - ・フィールドケージの絶縁体のPTFEを使わないようにする
 - 19F(n,n'γ)による110keVを削減
 - Xeガスを濃縮し、134Xeや136Xeのみを使用する
 - 129Xe(n,n'γ)による40keVと120keVを削減
 - 131Xe(n,γ)による80keVを削減

まとめ

今日の内容は内山修論になってます そのうちwebに乗る予定ですので、興味のある方は連絡ください

- ・ミグダル効果
 - ・急激な原子核の運動量変化により、追加で励起や電離が伴う現象
 - ・原子核散乱に伴うミグダル効果は暗黒物質探索の解析に有用
- ・キセノンガス検出器を使った探索:MIRACLUE実験
 - K 設電子の電離が伴うミグダル効果を探索
 - ・565keVの中性子を照射し、2つのクラスターを持つイベントを探す
 - EL光読み出しの位置感度を持つキセノンガス検出器を使用
- 中性子ビーム試験結果
 - クラスター数とエネルギーのカットをかけたエネルギースペクトルを得た
 - ・ミグダル信号モデルを生成し、分岐比の上限値を得た
 - 分岐比上限:0.16~0.30
 - ・理論値との比:2.7~5.0×10⁵
 - ・現状はガンマ線バックグラウンドが支配的
- 将来
 - ・ガンマ線BGの理解と削減、中性子のエネルギーを上げる、検出器の大型化、クエンチング測定、中性子シールド、効率の良いトリガー作成、などなど