超微粒子原子核乾板による LNGS環境中性子測定

白石 卓也 - 神奈川大学

On the behalf of the NEWSdm collaboration

2024/2/7「第9回極低放射能技術」研究会@横国大

DAMA信号の検証として

▶ DAMA実験の主張する信号: 2-6 keVee

▶ 多くの実験がNa quenching ~20%と報告

Environmental Neutron Measurement @LNGS

	Neutron Detector	Energy Range	γ-ray rejection power	Energy Resolution	Directionality
	Liquid Scintillator	1MeV – 100MeV	Bad	Good	None
	BF ₃ , ³ He Proportional Counter	Thermal – 20MeV	Good	None	None
	Proton-recoil Proportional Counter	10keV – 2MeV	Bad	Good	None
202	4/2Nano Imaging Tracker (NIT)	Thermal & 100 keV –	Good	Good	Good

Neutron Detection Principle by Nano Imaging Tracker (NIT)

Neutron Detection Methods for Various Energies

High-speed Readout and Image Processes

PTS system @ Toho Univ.

Achieving 0.5 kg/year/machine with 1 μ m range cut

Under constructing an upgraded PTS machine in Kanagawa Univ. $\rightarrow expected to be 1.5 kg/year/machine$

<u>T. Shiraishi, et al., PTEP **2021** 4, 043H01 (2021)</u> <u>T. Shiraishi, et al., Phys. Rev. C **107**, 014608 (2023)</u>

3D Convolutional Neutral Network

Background in Neutron Detection

- ✓ There is no background in sub-MeV region
 (2 14 µm → 0.25 1 MeV in proton energy)
- ✓ MeV region can be analyzed excluding single- α (especially ²¹⁰Po peak around 24 µm)

Calibration with Monochromatic Sub-MeV Neutron

Monochromatic 880 keV neutron exposure from T(p n)³He reaction at AIST

Exposed 7.9 hours with a stable temperature at -26°C

Calibration – Comparison with Simulation

GEANT4 simulation

*Color corresponding to neutron energy

- ✓ Detected recoil protons are almost good agreement with kinematical expectation
- Detection efficiency for R < 1.5 μm seems to be not 100%

Calibration – Angular and Range Dependency of Detection Efficiency

Neutron Measurement by NIT @ LNGS

Motivation of Surface Run

- Demonstration of spectrum measurement for environmental neutron and CR-DM search
- There is no detailed data in the sub-MeV region even on the surface ground

✓ Without shielding!

because there is no sensitivity for muon and gamma $^{\mbox{$12$}}$

- External α-rays are excluded by fiducial volume cut, then events are topologically classified to Singleprong and Multi-prong
- ➤ Unfortunately, n-Run1 samples accumulated a lot of Radon daughters, we focused on sub-MeV region (2~14µm → 0.25~1MeV) of Single-prong event to analyze with background free

Data/MC Comparison (n-Run1)

MeV Region (n-Run1)

Reduction of ²¹⁴Po Contamination at Drying

Hall F (NEWSdm facility)

2024/2/7

17

Surface Run Result (*after reference subtraction)

✓ オフセットBGを減らしたことにより、MeV領域のスペクトルがMCでの予想にかなり近づいた

Neutron Run Go to Underground

	Installed Place	²¹⁴ Po contamination (/g)	Exposure Time (days)	Experimental Scale (g*month)	Analyzed Scale (g*month)	Proton Energy Threshold (keV)
n-Run1 (Nov. 2021 -)	Surface ground	O(1000)	29	2	1.3	250
n-Run2 (May 2022 -)	Surface ground	O(100)	58	20	2.1	250
n-Run3 (Jan. 2023 -)	Underground Hall C & F	O(100)	120	30	1.4 Analysis ongoing	100
n-Run4 (Nov. 2023 -)	Underground Hall C	O(1)	120	100	 Exposure ongoin	100 g

At least 10 g*month scale is needed for underground neutron measurement

✓ 地下Runのため、sub-MeV帯の信号はかなり減ることを確認
 ✓ 300 keV 以下に時間依存のないオフセットBGあり
 →非物理事象

n-Run3 (Underground) Result

300 keV 以下のSignal-like はすべて水平な飛跡

・ 乳剤乾燥中に²¹⁴Po が混入すると、α線の一部を誤認する可能性?
 → 現在設置中のn-Run4 (low ²¹⁴Po contamination)で確認する

✓ 低エネルギー&水平の領域を避ければ、sub-MeV帯にexcessはなし

Intrinsic α Activity

²²⁸Th star (5 prong α -decay)

γ-ray measurement by
Ge detector
(²²⁸Th: 6.0±0.6 mBq/kg)
(²²⁶Ra: 0.8±0.2 mBq/kg)

α Multiplicity	Expected # of event by Ge detector (g ⁻¹ month ⁻¹)	# of event from n-Run1 (g ⁻¹ month ⁻¹)	# of event from n-Run3 (g ⁻¹ month ⁻¹)
5 (²²⁸ Th to ²⁰⁸ Pb)	16±2 (Th)	15±5	15±3
1 (²³⁸ U)	2.1±0.5 (U)		8.4±1.4
1 (²³⁴ U, ²³⁰ Th, ²²⁶ Ra)	6.3±1.5 (U)		26±3
1 (²¹⁰ Po)	2.1±0.5 (U) + ²²² Rn contaminated	165±16	790±23

²¹⁰Po seems to be increased from n-Run1

Summary

→ <u>T. Shiraishi, et al., PTEP 2021</u> 4, 043H01 (2021)

- 3-dimensional sub-micrometric tracking technique has been developed for NIT analysis
 - Achieved 100 keV threshold analysis for recoil proton with 0.5 kg/year/machine
 - \rightarrow Analysis speed will be further upgraded to 1.5 kg/year/machine
- Neutron run in Gran Sasso
 - Surface run (n-Run1, nRun2)
 - Succeeded to measure neutron spectrum and direction → <u>T. Shiraishi, et al., Phys. Rev. C 107, 014608 (2023)</u>
 - ²¹⁴Po contamination problem was found in MeV region

ightarrow Solved by using radon free room at the sample preparation in current experimental scale

- Underground run (n-Run3, nRun4) Preliminary
 - Aiming 100 g*month scale to measure neutron spectrum
 - Unknown horizontal background were found in < 300 keV
 - Maybe mis-reconstruction of alpha accumulated at wet condition?
 - If we avoid this region, there is no signal in sub-MeV region as expected
 - n-Run4 with further 2 orders lower ²¹⁴Po contamination is now ongoing

Backup