Axion Supernovascope

永田 夏海 東京大学

第7回超新星ニュートリノ研究会 Jan. 7, 2021

S. Ge, K. Hamaguchi, K. Ichimura, K. Ishidoshiro, Y. Kanazawa, Y. Kishimoto, N. Nagata, J. Zheng, JCAP **11**, 059 (2020).

CP violation

標準模型の弱い相互作用はCP対称性を破っている。 破れの起源は、カビボ小林益川行列内の複素位相:

$$V_{\rm CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

● 3世代の場合, 複素位相は唯一つ

M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

● その値はO(1): δ ~ 1.2 ~ 69°

弱い相互作用の場合, CP対称性の破れは 理論的に自然かつ一般的な形で与えられる。

Strong CP problem

強い相互作用においても,一般にCP対称性は破れうる。

$$\mathcal{L}_{\theta} = \theta_{G} \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \widetilde{G}^{A\mu\nu} - \sum_{q} m_{q} \bar{q} \theta_{q} i \gamma_{5} q \qquad \widetilde{G}^{A}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} G^{A\mu\nu}$$
これらの項は中性子の電気双極子モーメントを生み出す。
$$d_{n} = 8.2 \times 10^{-17} \bar{\theta} \ e \cdot \text{cm} \qquad \bar{\theta} = \theta_{G} + \sum_{q} \theta_{q}$$

K. Fuyuto, J. Hisano, N. Nagata, Phys. Rev. D87, 054018 (2013).

nEDM collaboration

$$|d_n| < 1.8 \times 10^{-26} \ e \cdot cm$$
 $|\bar{\theta}| \lesssim 10^{-10}$

一体なぜここまで小さな値になっているのだろうか?

Strong CP 問題

Peccei-Quinn mechanism

Peccei-Quinn対称性を持つように理論を拡張することで Strong CP 問題を解決する機構が提案された。R. D. Peccei and H. R. Quinn (1977).

この対称性の自発的破れに伴う南部・ゴールドストーン粒子

アクシオン

S. Weinberg (1978); F. Wilczek (1978).

<u>性質</u>

- アクシオン場に関する有効ポテンシャルの最小点において 強い相互作用はCP対称的になる。
- アクシオンは暗黒物質の候補にもなる。

<u>アクシオンの質量</u>

 f_a : アクシオン崩壊定数 $\Lambda_{\rm QCD}$: QCDスケール (数百MeV)

<u>アクシオンの相互作用</u>

● 光子との相互作用

●核子との相互作用

KSVZ, DFSZ

$$\mathcal{L}_{\text{int}} = \frac{C_{a\gamma\gamma}}{4f_a} a F_{\mu\nu} \widetilde{F}^{\mu\nu} \qquad \qquad \mathcal{L}_{\text{int}} = \sum_{N=p,n} \frac{C_N}{2f_a} \overline{N} \gamma^{\mu} \gamma_5 N \,\partial_{\mu} a$$

▶ *f_a*の値は(標準模型の質量スケールと比べて)とても大きい。

非常に弱い相互作用 & とても小さな質量

▶ 相互作用の係数は模型に依存する。

Constraints

アクシオンの相互作用は天文現象から制限されている。

SN1987A

$$f_a \gtrsim 4 \times 10^8 \text{ GeV}$$
 (KSVZ)

P. Carenza, et al., JCAP **1910**, 016 (2019).

● 中性子星冷却

$$f_a\gtrsim 5 imes 10^8~{
m GeV}$$
 (KSVZ)

[カシオペアA中性子星]

K. Hamaguchi, N. Nagata, K. Yanagi, and J. Zheng, Phys. Rev. D98, 103015 (2018).

しかしながら、これらの制限には様々な不定性がある。

加えて、新たな冷却源の存在を示唆する観測結果もある。

M. Giannotti, I. G. Irastorza, J. Redondo, A. Ringwald, K. Saikawa, JCAP 1710, 010 (2017).

天体由来のアクシオンをもっと直接的に観測する方法はないか??

Today's topic

近傍超新星由来のアクシオンを, axion helioscope を用いて 検出する可能性を議論する。

Similar idea: G. G. Raffelt, J. Redondo, and N. Viaux Maira, Phys. Rev. D 84, 103008, (2011).

現実的かつ具体的なセットアップを考え,その見込みを 評価する。

Nearby SN progenitor candidates

HIP	Common Name	Distance (pc)	Mass (M_{\odot})	RA (J2000)	Dec (J2000)
65474	Spica/ α Virginis	77(4)	11.43 ± 1.15	13:25:11.58	-11:09:40.8
81377	ζ Ophiuchi	112(3)	20.0	16:37:09.54	-10:34:01.5
71860	α Lupi	142(3)	10.1 ± 1.0	14:41:55.76	-47:23:17.5
80763	Antares/ α Scorpii	170(30)	11–14.3	16:29:24.46	-26:25:55.2
107315	Enif/ <i>e</i> Pegasi	211(8)	11.7(8)	21:44:11.16	+09:52:30.0
27989	Betelgeuse/ α Orionis	222_{-34}^{+48}	$11.6^{+5.0}_{-3.9}$	05:55:10.31	+07:24:25.4

<u>超新星候補天体の位置</u>

 $M \gtrsim 10 M_{\odot}, d \lesssim 250 \text{ pc}$

ある程度近くに結構 多くの候補天体がある。

PreSN neutrino alarm

重力崩壊が起こるより前に axion helioscope を超新星に向けて おかねばならない。

重力崩壊前に放出される前兆ニュートリノを用いる。

Supernova Early Warning System (SNEWS)

Ref.) K. Ishidoshiro, C. Kato, T. Yoshida, arXiv:2006.02519.

放射源の位置も見積もれるかもしれない。

H.-L. Li, et. al., JCAP 05, 049 (2020); M. Mukhopadhyay, et.al., APJ 899, 2, 153 (2020).

- ▶ JUNO, O(1) 時間前
- ▶ JUNO (+Li), O(1) 時間前

重力崩壊する近傍超新星を前もって同定しうる。

Axion helioscope

検出器として axion helioscope を用いる。

Experiment	(Proposed) site	<i>B</i> (T)	<i>L</i> (m)	A (m ²)	调土
CAST	CERN	9	9.3	2.9×10^{-3}	肥ム
BabyIAXO	DESY	~ 2	10	0.77	
IAXO baseline	DESY	~ 2.5	20	2.3	泡本
IAXO+	DESY	~ 3.5	22	3.9	
TASTE	INR	3.5	12	0.28	

太陽アクシオン検出を目的に設計

エネルギー: O(1) keV

● X線検出器を搭載

超新星アクシオンのエネルギー = O(10) MeV

Axion helioscope

Axion helioscope

γ線検出器を反対側に取り付けることを提案する。

Axion SN-scope

検出器をひっくり返して, supernovascope に変身させる。

重力崩壊のO(1) 日—O(1) 時間前

前兆ニュートリノ警報!

Axion supernovascope が候補天体へと向けられる。

アクシオン放出 (~10 秒間)

Observation time fraction

実際のところ, supernovascopeを候補天体へと向けられそうか?

Event number

- 質量が比較的大きい場合, supernovascopeの方がIAXOより も高い感度をもつ。
- 質量が比較的小さい場合, supernovascopeはIAXOと同程度の 感度を持つ。

太陽アクシオンと超新星アクシオン共に検出できるかもしれない。

Background estimate

γ線検出器の例

ヒット数 (>1 MeV)

● 10秒間で O(10³) 個の宇宙線ミューオンが飛来。

● 光子は検出器内で止まるが,ミューオンは基本突き抜ける。

● ミューオンは光子よりも多くのエネルギーを落とす。

背景事象は除外できそう。

Conclusion

- 近傍超新星由来のアクシオンを, supernovascopeを
 用いて直接捉える可能性を議論した。
- 前兆ニュートリノを用いることでsupernovascopeを 超新星に予め向けうる。
- 将来のaxion helioscope実験において、この可能性も 考慮して検出器設計を行うことを提案したい。

Axion-nucleon couplings

<u>アクシオン・核子相互作用</u>

$$\mathcal{L}_{\text{int}} = \sum_{N=p,n} \frac{C_N}{2f_a} \bar{N} \gamma^{\mu} \gamma_5 N \,\partial_{\mu} a$$

● KSVZ 模型: クォークとの結合を持たない。

$$C_p = -0.47(3), \quad C_n = -0.02(3)$$

Cn が0と無矛盾であることに注意。

● DFSZ 模型: クォークと直接結合する。

$$C_p = -0.182(25) - 0.435 \sin^2 \beta$$

 $C_n = -0.160(25) + 0.414 \sin^2 \beta$

Axion-photon coupling

<u>アクシオン・光子相互作用</u>

$$\mathcal{L}_{\rm int} = \frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \widetilde{F}^{\mu\nu} \qquad g_{a\gamma\gamma} \equiv \frac{C_{a\gamma\gamma}}{f_a}$$

$$g_{a\gamma\gamma} = \frac{\alpha}{2\pi f_a} \left[\frac{E}{N} - \frac{2}{3} \frac{4m_d + m_u}{m_u + m_d} \right] \simeq \frac{\alpha}{2\pi f_a} \left[\frac{E}{N} - 2.0 \right]$$

● KSVZ 模型: E/N = 0.

● DFSZ 模型: E/N = 8/3.

Luminosity

Energy spectrum

K. Ishidoshiro, C. Kato, T. Yoshida, arXiv:2006.02519.

Pre-supernova neutrinos

<u>方向角決定精度 (ベテルギウス; 1時間前)</u>

 $\bar{\nu}_e + p \rightarrow n + e^+$

M. Mukhopadhyay, et.al., APJ 899, 2, 153 (2020).

Observable time

異なる地点に検出器をおくか, θ_{max}を大きくする ことで観測可能時間を100%にできる。

Axion emission rate

重力崩壊後およそ10秒間でアクシオンは大量に生成される。

制動放射

$$N + N' \rightarrow N + N' + a$$

アクシオン放出率は,

$$\dot{N}_a \simeq 2.2 \times 10^{74} \text{ s}^{-1} \times \left(\frac{m_N}{f_a}\right)^2 C_{N,\text{eff}}^2$$

ただし,

$$C_{N,\text{eff}}^2 \equiv C_n^2 + 0.61C_p^2 + 0.53C_nC_p$$

P. Carenza, et al., JCAP 1910, 016 (2019).

Axion spectrum

Axion conversion rate

検出器内部でのアクシオン・光子遷移率:

$$P(a \to \gamma) = \frac{1}{4} \left(g_{a\gamma\gamma} BL \right)^2 \left(\frac{\sin(qL/2)}{qL/2} \right)^2$$

 $qL \ll 1$ $P(a \to \gamma) \simeq \frac{1}{4} \left(g_{a\gamma\gamma} BL \right)^2 \propto L^2$ (干涉性) $m_a \lesssim \sqrt{\frac{2\omega_a}{L}}$

Number of events

$$\begin{split} N &\simeq P(a \to \gamma) \dot{N}_a \; \frac{A}{4\pi d^2} \Delta t \\ &\simeq 1.0 \times \left(\frac{A}{2.3 \,\mathrm{m}^2}\right) \left(\frac{B}{2.5 \,\mathrm{T}}\right)^2 \left(\frac{L}{20 \,\mathrm{m}}\right)^2 \times \left(\frac{150 \,\mathrm{pc}}{d}\right)^2 \left(\frac{T}{30 \,\mathrm{MeV}}\right)^{5/2} \left(\frac{\Delta t}{10 \,\mathrm{s}}\right) \\ & \times \left(\frac{C_{a \gamma \gamma}}{0.0023}\right)^2 \left(\frac{3 \times 10^8 \,\mathrm{GeV}}{f_a}\right)^4 \left(\frac{C_{N,\mathrm{eff}}}{0.37}\right)^2 \;, \end{split}$$

 $(m_a \ll \sqrt{2\omega_a/L})$

A: 断面積

d: 超新星までの距離

Event number (IAXO+)

$$g_{a\gamma\gamma} \equiv \frac{C_{a\gamma\gamma}}{f_a}$$

<u>イベント数の見積もり</u>

相互作用の係数はKSVZ模型に固定

ただし、アクシオン質量は独立な パラメーターとした。

S. Ge, K. Hamaguchi, K. Ichimura, K. Ishidoshiro, Y. Kanazawa, Y. Kishimoto, N. Nagata, J. Zheng, JCAP **11**, 059 (2020).

Event number

S. Ge, K. Hamaguchi, K. Ichimura, K. Ishidoshiro, Y. Kanazawa, Y. Kishimoto, N. Nagata, J. Zheng, JCAP **11**, 059 (2020).

Event number vs SN1987A limit

● SN1987Aの制限, $f_a \propto C_{
m err}^{1/2}$

● イベント数, $f_a \propto C_{\rm err}^{1/4}$

Total energy deposit

光子はエネルギーのほとんどを検出器内に落とす
 ミューオンは光子よりも多くのエネルギーを落とす