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⼤質量星の⼀⽣（重⼒崩壊型超新星になる場合）
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ü 超新星爆発に⾄る現在の標準シナリオ
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重⼒崩壊型超新星（Core-Collapse Supernova; CCSN）
になるのは初期質量が約10太陽質量以上の星.

星進化の時間スケールは質量に依存する.

⽰しているのは初期質量が約10太陽質量の場合.
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ü 超新星が放出する
ニュートリノ
重⼒波
電磁波

空間２次元の超新星数値計算に
基づく予測

親星モデルは
Woosley, Heger, & Weaver ʼ02 
の17太陽質量モデルを使⽤

ü バウンス前からν明るい
（前兆ν）

ü バウンス後のνが⽀配的



超新星ニュートリノ
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ü 超新星νの明るさを決める要素
＝質量降着率

空間１次元および３次元の数値計算に基づく予測

親星モデルは Urushibata+ʼ18 のSN 1987A モデルを使⽤

ü 質量降着率を決める要素
1. 星の密度構造

星の質量, ⾦属量, バイナリティ

3. 衝撃波の時間発展

2. コアの⾃転
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ü イントロダクション

ü 超新星ニュートリノと親星質量・⾦属量の関係
超新星背景ニュートリノへの応⽤

ü 超新星ニュートリノと⾃転の関係

ü 現実的な超新星モデルの作成に向けて
親星の⾮球対称構造を考慮した計算

ü まとめ

KN+’15

Horiuchi, Sumiyoshi, KN+’18
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系統的CCSN計算 - 1D

ü 数百個の親星モデルを⽤いた空間１次元の重⼒崩壊計算
O’Connor & Ott ’11,’13; Ugliano+’12; Pejcha & Thompson’15; Ertl+’16; Sukhbold+’16; Ebinger+’19

The Astrophysical Journal, 730:70 (20pp), 2011 April 1 O’Connor & Ott

Figure 13. Outcome of core collapse as a function of ZAMS mass of single nonrotating massive stars, assuming that for moderately stiff nuclear EOS (e.g., LS180/
LS220), neutrino-driven explosions can be launched up to a bounce compactness ξ2.5 ! 0.45 (cf. Section 4.5). Other potential explosion mechanisms are neglected. We
consider only explosion and BH formation without explosion as outcomes and neglect other scenarios, including post-explosion BH formation via fallback accretion
(Zhang et al. 2008; Dessart et al. 2010), cooling or nuclear phase transitions. Shown are results for a range of model sets and metallicities (see Section 3). Very low
metallicity stars with ZAMS masses above ∼30 M" robustly form a BH without explosion. At higher metallicity, uncertainties in the physics of mass loss (e.g., Smith
et al. 2010) make robust predictions difficult. This is reflected in the rather dramatic disagreement of the four solar-metallicity progenitor model sets that we include.
The “BH fractions” stated at the right edge of the plot denote the fraction of massive stars with M " 8 M" that form BHs. They are obtained by convolution with a
Salpeter IMF under the assumption that stars with 8 M" ! M ! 14 M" explode robustly.
(A color version of this figure is available in the online journal.)

(IMF; α = 2.35, Mmin = 8.0 M", and Mmax = 150.0 M") we
estimate that ∼15% of all progenitors form BHs without explo-
sion. At (around) solar metallicity, the precise way of prescrib-
ing mass loss in stellar evolution has tremendous consequences
on the mapping between ZAMS mass and core collapse out-
come. Depending on the particular mass-loss prescription, we
predict a BH fraction of 0%–7% for solar-metallicity stars. This
makes mass loss the single most important unknown parameter
in connecting ZAMS conditions to core collapse outcome (in
agreement with Smith et al. 2010).

Rapid rotation, which may be present in a significant subset
of massive stars, generally increases the maximum PNS mass
by centrifugal support and delays BH formation. Assuming
(quite likely) uniform rotation of the PNS core, the increase
in maximum PNS mass due to centrifugal support in the
range of rotation rates explored is ∼5%–10%. In the basic
neutrino mechanism, rotation leads to a lower sum of νe and
ν̄e luminosities and lower mean energies for all neutrino types.
This is detrimental for explosion in 1.5D (and perhaps even
in 2.5D) despite centrifugal support (Fryer & Heger 2000; Ott
et al. 2008). A larger fraction of massive stars may form BHs
with (moderate) rotation than without. Left out of this picture are
potential magnetohydrodynamics contributions to the explosion
mechanism and energetics (cf. Burrows et al. 2007b).

Of particular interest to both formal relativity theory and
astrophysics is the range of potential birth spins of BHs.
Our results quite strikingly suggest that the rotation rate of
the maximum-mass PNS and, hence, the spin of the nascent
BH, will be limited to values of a$ below !0.9 by likely
nonaxisymmetric dynamics. If true and confirmed by multi-
dimensional simulations, 3D rotational instabilities may be a
cosmic censor preventing naked singularities from forming in
stellar collapse.

Rotation and the associated angular momentum are key
ingredients in the collapsar scenario for GRBs (Woosley 1993).
As part of this study, we have performed the first BH formation

study with the m35OC GRB progenitor of Woosley & Heger
(2006). Using the LS220 EOS, we predict an initial BH mass
of ∼2.29 M" and a$ of ∼0.58. Assuming that the GRB engine
cannot operate until a Keplerian disk has formed, there will be a
delay of ∼10 s between BH formation and GRB engine ignition
at a BH mass of ∼8 M" and a$ ∼ 0.75.

Finally, we re-emphasize that the goal of this study was not
to yield accurate predictions about the outcome of core collapse
in any individual progenitor. Rather, we have studied and
established overall trends with progenitor parameters. We have
made simplifications and approximations, and have omitted a
broad range of potentially relevant physics. The most important
of the latter may well be multi-dimensional dynamics and their
effect on the CCSN explosion mechanism and on the associated
failure rate of CCSNe.

Future work may be directed toward studying the systemat-
ics of BH formation in the post-explosion phase via fallback
accretion, PNS cooling, or EOS phase transitions. Our current
neutrino treatment must be upgraded for more quantitatively
accurate simulations and neutrino signature predictions. Ulti-
mately, multi-dimensional GR simulations of successful and
failing CCSNe will be necessary to study the multi-dimensional
dynamics left out here and for making truly robust predictions
of the outcome of stellar collapse for any given set of initial
conditions.

We acknowledge helpful discussions with and input from A.
Burrows, P. Cerdá-Durán, L. Dessart, M. Duez, T. Fischer, J.
Kaplan, J. Lattimer, C. Meakin, J. Murphy, F. Peng, S. Phin-
ney, C. Reisswig, S. Scheidegger, N. Smith, E. Schnetter, K.
Thorne, and S. Teukolsky. We thank S. Woosley and A. Heger
for their recent presupernova models and A. Chieffi and M.
Limongi for making available both of their presupernova model
sets. The computations were performed at Caltech’s Center for
Advanced Computing Research on the cluster “Zwicky” funded
through NSF grant no. PHY-0960291 and the Sherman Fairchild
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1D計算は基本的に爆発しないので、何らかの
⼈為的操作が必要

The Astrophysical Journal, 757:69 (10pp), 2012 September 20 Ugliano et al.

the reaction rate for 52Fe(α,γ )56Ni within grid cells whose
electron fraction Ye is below 0.49. This allows us to keep track of
element formation in regions with neutron excess. The network
is solved in grid cells whose temperature is between 108 K and
7×109 K. We assume that at T > 7×109 K all nuclei are photo-
disintegrated to α-particles. Such a composition is consistent
with the NSE yields that are produced by our network solver in
the high-temperature limit because the burning network contains
α-particles as the only representatives of light nuclear species.
A feedback from the network composition to the EOS and thus
to the hydrodynamic evolution is neglected.

2.1. Proto-neutron Star Core Model

The cooling of the PNS core is described by an analytic model
that couples the excised core region to the surrounding accretion
layer, whose evolution is followed on the computational grid.
We assume the dense PNS core with mass Mc and radius Rc
to be approximately homogeneous and its EOS to be an ideal
Γ law, P = (Γ − 1)e (with P being the pressure, e the internal
energy density). Combining the total core energy, Ec = Eg +Ei,
and the virial theorem, Eg + 3(Γ − 1)Ei + S = 0, we can replace
the integrated internal energy, Ei, and express Ec in terms of the
Newtonian gravitational energy, Eg = −2/5GM2

c /Rc, and the
surface term, S = −4πR3

c Ps, for pressure Ps at Rc:

Ec = 3Γ − 4
3(Γ − 1)

Eg − S

3(Γ − 1)
. (1)

The energetic evolution of the core is given by its loss of neutrino
energy and compression work done on its surface as

Ėc ≡ dEc

dt
= −Lν,c − 4πPsR

2
c Ṙc , (2)

where Ėc can be computed as time derivative of Equation (1),
Lν,c is the total neutrino luminosity, and the second term
results from the time derivative of the core volume. Instead
of setting Ps equal to the boundary pressure on the hydro
grid, we prefer to link it to overall properties of the accretion
layer. This prescription is intended to capture the nature of
the core–mantle coupling but not to constrain the freedom to
tune the parameters of the simple PNS-core model. We therefore
consider hydrostatic equilibrium in terms of the mass coordinate
m(r), dP/dm = −GM/(4πr4), and linearize both sides to
obtain

Ps = ζ
GMcmacc

4πR4
c

, (3)

where macc is the mass of the accretion layer that surrounds
the PNS core, ζ > 0 is a numerical factor of order unity,
and we assumed P0 $ Ps for the pressure P0 outside of the
accretion layer. Moreover, in performing the time derivative of
Equation (1) we assumed Mc and Γ to be constant. Combining
Equations (1)–(3), we arrive at

Lν,c = 3Γ − 4
3(Γ − 1)

(Eg + S)
Ṙc

Rc
− ζ

3(Γ − 1)
δEacc

δt
, (4)

with S = −ζ GMcmacc/Rc and δEacc/δt ≡ GMcṁacc/Rc.
While the first term on the right-hand side of Equation (4)
describes the luminosity increase due to the deepening of
the gravity potential and surface work in the case of PNS
compression, the second term accounts for the higher core

Figure 1. Timescale of 90% of the neutrino-energy loss of the forming compact
remnant as a function of the progenitor ZAMS mass. Red histogram bars indicate
successful explosions, gray ones correspond to cases where BHs form without
an SN explosion, and the green bar marks the 19.8 M% progenitor used for the
calibration with SN 1987A observations (see the text). The BH formation cases
correspond to “cooling times” in excess of 6 s because the compact object in our
simulations remains radiating neutrinos even when its mass nominally exceeds
the BH formation limit. This implies that our modeling does not invoke any
assumption about the EOS-dependent mass limit for BH formation.
(A color version of this figure is available in the online journal.)

pressure (and internal energy) needed when the accretion layer
grows in mass.

Equation (4) is used to prescribe the boundary luminosities,
Lνi ,c ≡ 'νi

Lν,c, of neutrinos of all kinds with 'νe
= 0.20,

'ν̄e
= 0.15, 'νx

= 0.1625. (This choice corresponds to a certain
loss of lepton number from the PNS core (see Scheck et al.
2006) and ensures a reasonable evolution of Ye in the PNS
mantle and surface layers but does not have much relevance for
the dynamical evolution.)

In our simulations macc is taken to be the mass between the
inner grid boundary and a density of ρ0 = 1010 g cm−3 at radius
r0, where we define ṁacc = −4πr2

0 v0ρ0 (accretion means a
velocity v0 < 0 and ṁacc > 0). The core radius is assumed
to contract according to Rc(t) = Rc,f + (Rc,i − Rc,f)/(1 + t)n
with Rc,i = Ri

ib and Rc,f being the initial and final radius,
respectively, and t is measured in seconds. With Γ = 3, n = 3,
and ζ = 0.6 a choice of Rc,f = 6 km allows us to reproduce E87A
and MNi,87A of SN 1987A for progenitors in the 20 M% range.
For the simulations discussed below the 19.8 M% progenitor
serves for the calibration of the PNS-core model, but the overall
results are similar when neighboring stars or an SN 1987A blue
supergiant progenitor (Woosley et al. 1988) are used for the
calibration.

The chosen parameter values lead to typical PNS neutrino-
cooling times (t90 for 90% of the total neutrino-energy release)
of 3.5–5.5 s (Figure 1). This is shorter than the ∼10 s of emission
inferred from the SN 1987A neutrino events of Kamiokande II.
However, this detector reported a 7 s gap after eight events in the
first two seconds, and the last three events were very close to the
detection threshold (Hirata et al. 1987). It is interesting to note
that the neutrino signal in all three experiments (Kamiokande II,
Irvine–Michigan–Brookhaven, and Baksan) is compatible with
a PNS cooling period (exponential cooling timescale) of only

3

The Astrophysical Journal, 757:69 (10pp), 2012 September 20 Ugliano et al.
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Figure 1. Timescale of 90% of the neutrino-energy loss of the forming compact
remnant as a function of the progenitor ZAMS mass. Red histogram bars indicate
successful explosions, gray ones correspond to cases where BHs form without
an SN explosion, and the green bar marks the 19.8 M% progenitor used for the
calibration with SN 1987A observations (see the text). The BH formation cases
correspond to “cooling times” in excess of 6 s because the compact object in our
simulations remains radiating neutrinos even when its mass nominally exceeds
the BH formation limit. This implies that our modeling does not invoke any
assumption about the EOS-dependent mass limit for BH formation.
(A color version of this figure is available in the online journal.)

pressure (and internal energy) needed when the accretion layer
grows in mass.

Equation (4) is used to prescribe the boundary luminosities,
Lνi ,c ≡ 'νi

Lν,c, of neutrinos of all kinds with 'νe
= 0.20,

'ν̄e
= 0.15, 'νx

= 0.1625. (This choice corresponds to a certain
loss of lepton number from the PNS core (see Scheck et al.
2006) and ensures a reasonable evolution of Ye in the PNS
mantle and surface layers but does not have much relevance for
the dynamical evolution.)

In our simulations macc is taken to be the mass between the
inner grid boundary and a density of ρ0 = 1010 g cm−3 at radius
r0, where we define ṁacc = −4πr2

0 v0ρ0 (accretion means a
velocity v0 < 0 and ṁacc > 0). The core radius is assumed
to contract according to Rc(t) = Rc,f + (Rc,i − Rc,f)/(1 + t)n
with Rc,i = Ri

ib and Rc,f being the initial and final radius,
respectively, and t is measured in seconds. With Γ = 3, n = 3,
and ζ = 0.6 a choice of Rc,f = 6 km allows us to reproduce E87A
and MNi,87A of SN 1987A for progenitors in the 20 M% range.
For the simulations discussed below the 19.8 M% progenitor
serves for the calibration of the PNS-core model, but the overall
results are similar when neighboring stars or an SN 1987A blue
supergiant progenitor (Woosley et al. 1988) are used for the
calibration.

The chosen parameter values lead to typical PNS neutrino-
cooling times (t90 for 90% of the total neutrino-energy release)
of 3.5–5.5 s (Figure 1). This is shorter than the ∼10 s of emission
inferred from the SN 1987A neutrino events of Kamiokande II.
However, this detector reported a 7 s gap after eight events in the
first two seconds, and the last three events were very close to the
detection threshold (Hirata et al. 1987). It is interesting to note
that the neutrino signal in all three experiments (Kamiokande II,
Irvine–Michigan–Brookhaven, and Baksan) is compatible with
a PNS cooling period (exponential cooling timescale) of only
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系統的CCSN計算 - 2D

ü 約400個の親星モデルを⽤いた空間２次元の重⼒崩壊計算
KN+’15, PASJ, 67, 107

107-8 Publications of the Astronomical Society of Japan (2015), Vol. 67, No. 6

Fig. 7. As figure 6 but for models s25.0 (a) to s75.0 (i), from top left to bottom right. (Color online)

Fig. 8. Average shock radii (thick solid lines) and mass-accretion rate
of the collapsing stellar core at 500 km (thin dashed lines) for some
selected models. (Color online)

the most massive PNS in our 101 solar-metallicity models
(MPNS = 2.16 M! for s23.4 model with ξ2.5 = 0.4273;
see also figure 14). In their 1D GR study, a model with
ξ2.5, cb > 0.4 leads to BH formation at tpb ! 1 s. For a given
BH-forming progenitor model, the BH formation timescale
might be delayed in our 2D exploding models because the
shock expansion would possibly make the mass accretion
onto the PNS smaller. Although multi-D GR simulations

Fig. 9. Time evolution of central PNS mass for the same models as
in figure 8. The compactness parameter ξ2.5 is labelled beside each
line. The horizontal dotted line represents the maximum mass of a cold
neutron star of the LS220 EOS. (Color online)

with elaborate neutrino transport scheme are needed to
unambiguously clarify this issue, the above exploratory
discussions lead us to speculate that BH formation is less
likely to affect the systematic features obtained in our solar
metallicity models. We will comment further on the pos-
sible effects of BH formation in section 5, including for
metal-deficient progenitors.
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平均衝撃波半径（実線）と質量降着率（点線）

パラメータなしのセルフコンシステントな計算.

親星の質量（密度構造）によって質量降着率と
衝撃波の時間発展が⼤きく異なる.
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系統的CCSN計算 - 2D

ü 約400個の親星モデルを⽤いた空間２次元の重⼒崩壊計算
KN+’15, PASJ, 67, 107
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Fig. 7. As figure 6 but for models s25.0 (a) to s75.0 (i), from top left to bottom right. (Color online)
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might be delayed in our 2D exploding models because the
shock expansion would possibly make the mass accretion
onto the PNS smaller. Although multi-D GR simulations

Fig. 9. Time evolution of central PNS mass for the same models as
in figure 8. The compactness parameter ξ2.5 is labelled beside each
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neutron star of the LS220 EOS. (Color online)

with elaborate neutrino transport scheme are needed to
unambiguously clarify this issue, the above exploratory
discussions lead us to speculate that BH formation is less
likely to affect the systematic features obtained in our solar
metallicity models. We will comment further on the pos-
sible effects of BH formation in section 5, including for
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コンパクトネス ξM = M/R(M)と良い相関を
⽰す.



超新星背景ニュートリノの予⾔

ü ２次元計算の結果を使って背景ニュートリノスペクトルを予測
Horiuchi, Sumiyoshi, KN+’18, MNRAS, 475, 1363

Becker+ʼ12

超新星背景ニュートリノ：過去のCCSNeが放出したニュートリノの重ね合わせ.
DSNB from extensive core-collapse simulations 9

For the cosmic history of the core-collapse rate, we
adopt those predicted from the comoving star formation rate
(e.g., Hopkins & Beacom 2006), which yields a robust es-
timate for the core-collapse rate regardless of whether the
collapse generates a luminous supernova or not (Horiuchi
et al. 2011). The scaling from the star formation rate to the
core-collapse rate is,

RCC(z) = €⇢⇤(z)
Ø

100

8
 (M)dMØ

100

0.1 M (M)dM
, (15)

where ⇢⇤(z) is the cosmic star formation rate in units
M� yr

�1
Mpc

�3, which is estimated by various priors (e.g.,
far-infrared, ultra-violet, emission lines, and others, see, e.g.,
Kennicutt 1998) as,

€⇢⇤(z) = fxLx(z) , (16)

where Lx is the observed luminosity density of the priors
and fx is the conversion factor to the star formation rate.

The DSNB prediction depends weakly on the IMF
shape. The IMF is one of the most important inputs deter-
mining the values of fx , with variations of close to a factor
⇠ 2 (Kennicutt 1998; Hopkins 2004; Horiuchi et al. 2013).
However, this is nearly fully cancelled by the ratio of inte-
grals in Eq. (15). This is because the massive stars used as
proxies for star formation are close in mass range to core-
collapse progenitors. As a result, the product changes only
at the level of a few percent.

3.4 Neutrino mixing and DSNB detection

The neutrinos that are emitted from the neutrinospheres
undergo oscillations during their propagation to a terrestrial
detector. The oscillation we implement is that of matter-
induced MSW. This results in a ⌫̄e survival probability of
cos

2 ✓12 for the normal mass hierarchy (NH), where ✓12 is
the solar mixing angle and sin

2 ✓12 ' 0.3, and a survival
probability of ⇡ 0 for inverted mass hierarchy (IH) (Dighe &
Smirnov 2000). The terrestrial flux of ⌫̄e is therefore given
by,

(NH) Fobs

⌫̄e
' cos

2 ✓12F⌫̄e + sin
2 ✓12F⌫x , (17)

(IH) Fobs

⌫̄e
' F⌫x . (18)

Additional flavor mixing can be induced by the coherent
neutrino-neutrino forward scattering potential. Although a
complete picture of self-induced flavor conversions under
multi-angle treatment is still missing (for a review, see, e.g.,
Duan et al. 2010; Mirizzi et al. 2016), the most uncertain
epoch is the accretion phase (see, e.g., Chakraborty et al.
2011a), which powers of order tens of percent of the neu-
trino flux. Self-induced e↵ects are not important during the
earlier neutronization burst because of the large excess of
⌫e due to core deleptonization (Hannestad et al. 2006), and
is also less relevant during the later cooling phase when the
di↵erent neutrino flavors tend towards similar spectra. Lu-
nardini & Tamborra (2012) investigated the e↵ect of self-
induced flavor conversions on the time-integrated neutrino
emission and found that indeed it is subdominant, a↵ecting
at some O(10)% compared to the MSW e↵ect (see also, e.g.,
Chakraborty et al. 2008). We therefore consider only MSW
e↵ects, but bear in mind that additional oscillation e↵ects
may occur at a subdominant level.

For detection we consider the Super-Kamiokande (SK)
and Hyper-Kamiokande (HK) water Cherenkov detectors,
with 22.5 kton and 374 kton inner volumes, respectively.
The main backgrounds above ⇠ 10 MeV energies are asso-
ciated with atmospheric neutrinos: (1) atmospheric ⌫̄e, (2)
charge-current scattering of atmospheric ⌫µ and ⌫̄µ that pro-
duce sub-Cherenkov muons (so-called“invisible muons”), (3)
atmospheric neutral current scattering, and (4) neutral cur-
rent inelastic scattering with pion generation (see, e.g., Bays
et al. 2012, and references therein). SK is currently undergo-
ing preparations to upgrade its tank with gadolinium salt,
which would improve signal/background di↵erentiation by
a delayed neutron-tagging of inverse-� events (Beacom &
Vagins 2004). This would be particularly e↵ective in reduc-
ing invisible muons, which remain the dominant background
for DSNB searches (Bays et al. 2012). It is not determined
whether the technique will be applied in HK, or whether tag-
ging using captures on protons will be improved. We there-
fore conservatively adopt lepton detection enery ranges of
10–26 MeV and 18–26 MeV for SK and HK, respectively.
The cross section for the inverse-� decay interaction in wa-
ter is accurately known (Vogel & Beacom 1999; Strumia &
Vissani 2003). Other large-volume detectors such as JUNO,
DUNE, and other proposals o↵er opportunities for comple-
mentary information (Cocco et al. 2004; Mollenberg et al.
2015; Wei et al. 2017), but the expected event rates are lower
than in HK and we do not consider them in this work.

In Figures 7 and 8 we show the total predicted DSNB
event rates as functions of the critical compactness, ⇠2.5,crit.
As expected, decreasing ⇠2.5,crit increases the predicted
DSNB event rate because of the larger contribution from
failed explosions especially in the higher energy range (see
Figure 6).

In Figure 7 we show some of the important model pre-
diction uncertainties. For this purpose we consider full ⌫̄e
survival (shown in blue) and no survival (i.e., ⌫̄obs

e = ⌫x ,
shown in black). We assume the HK detector. The uncer-
tainty bands due to uncertain cosmic core-collapse rate and
the uncertain ⌫x shape parameter between 1.0 to 4.0 are
large, but both are expected to be dramatically reduced
with more observational and theoretical studies in the near
future. We also show the e↵ects of varying the IMF slope
between �2.15 to �2.45. The IMF a↵ects the DSNB via dif-
ferent weights to progenitors, as well as through di↵erent
core-collapse rates, but the combined e↵ects on the DSNB
are small. As a separate prediction curve (not a band) we
also show the results of adopting the pre-supernova progen-
itor models of Woosley & Heger (2007). The Woosley &
Heger (2007) progenitors have higher compactness compared
to WHW02, which results in ⇠ 10% larger DSNB event rates.
Finally, we show the results based on the 18 core-collapse
models of Summa et al. (2016), which are ⇠ 60% larger than
those based on Nakamura et al. (2015). The simulations of
Summa et al. (2016) typically predict larger ⌫̄e total energet-
ics, higher mean energies, and smaller shape parameters (see
Figure 4). Although the di↵erences are small, their combined
e↵ects result in a noticeable e↵ect for the DSNB event rates,
which are biased towards the high-energy portion of the neu-
trino emission. The large di↵erence highlights future needs
of improved simulation suites extending to late times. How-
ever, we should caution that we have taken more assump-
tions in our treatment of the Summa et al. (2016) models,
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the lower panel, a shape parameter of 3.0 is assumed, but
we will explore values in the range 1.0–4.0 in later sections.

The contribution from collapse to black holes is intro-
duced by considering a critical compactness, ⇠2.5,crit, above
which progenitors are assumed to collapse to black holes.
While this is a simplistic picture of a complex phenomenon,
our prescription is motivated by various studies showing
that large compactness is conducive to black hole formation
(e.g., O’Connor & Ott 2011). In general, the precise value
of ⇠2.5,crit will depend on the explosion mechanism and their
implementation. For the neutrino mechanism, current im-
plementations suggest values between 0.2–0.6 (O’Connor &
Ott 2011; Ugliano et al. 2012; Horiuchi et al. 2014; Pejcha &
Thompson 2015; Ertl et al. 2016). However, ongoing e↵orts
are expected to update predictions in the future. We thus
treat ⇠2.5,crit as a parameter of interest that is predicted by
simulations and to be tested by future observational data.
For the neutrino emission of failed explosions, we adopt the
functional form Eq. (12) with neutrino spectral parameters
predicted by black hole forming simulations (Figure 5).

The predicted weighted average neutrino spectrum in-
cluding contributions from collapse to black holes are shown
as non-solid lines in Figure 6. Four values of ⇠2.5,crit = 0.1,
0.2, 0.3, and 0.43 are shown. Based on the solar metallicity
progenitors of WHW02, these critical values correspond to
failed explosion fractions (the number of failed explosions
over the total number of massive stars in the mass range
8–100M�) of 45%, 17%, 5%, and 0%, respectively. Note that
the largest compactness in the WHW02 solar metallicity
stellar suite is ⇠2.5 ⇡ 0.43. Therefore, values of ⇠2.5,crit above
0.43 means no contribution from collapse to black holes in
our calculations.

The resulting spectra are the combined e↵ect of failed
explosions having lower neutrino total energies and higher
mean energies than the 2D counterparts. The smaller the
critical compactness, the larger the contribution from failed
explosions, and thus the more prominent is the high-energy
component of the mean neutrino spectrum. Adopting a
shallower (steeper) IMF increases (decreases) the empha-
sis on the most massive stars. For example, compared to the
Salpeter IMF, a slope of �2.15 implies ⇠ 30% larger repre-
sentation of the most massive stars M > 40M�. However,
the most massive stars are rare and the increase is mod-
est in absolute terms. Even for the shallow �2.15 slope and
largest failed fraction (⇠2.5,crit = 0.1), the weighted average
neutrino spectrum is only a↵ected at the few percent level
below neutrino ⇠ 30 MeV and ⇠ 15% above ⇠ 60 MeV.

The core compactness of massive stars has recently
been carefully investigated by Sukhbold & Woosley (2014)
using one-dimensional stellar evolution codes. They show
that quantitatively, the compactness of a star depends on a
range of inputs, including not only the initial stellar mass
and metallicity, but also the way mass loss and convec-
tion is handled in the code, as well as the nuclear micro-
physics implementation. However, the authors also show
that qualitatively the compactness robustly follows a non-
monotonic distribution in ZAMS mass, with a peak around
⇠ 20M�. This is the result of the interplay of the carbon-
burning shell with the carbon-depleted core, and later,
oxygen-burning shell with the oxygen-depleted core. Nev-
ertheless, the position of the peak has an uncertainty of
some ⇠ 1M� in mass (Sukhbold &Woosley 2014). To explore
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Figure 6. Weighted average neutrino spectra of ⌫̄e (top panel)
and ⌫x (bottom panel), based on 101 2D core-collapse simulations
and a collection of simulations of collapse to black holes. The rel-
ative contributions from neutron star and black hole scenarios
are determined by the critical compactness, ⇠2.5,crit; progenitors
with compactness ⇠2.5 > ⇠2.5,crit are assumed to collapse to black
holes. For reference, the fraction of black hole collapses are 45%
(⇠2.5,crit = 0.1), 17% (⇠2.5,crit = 0.2), 5% (⇠2.5,crit = 0.3), and 0%
(⇠2.5,crit = 0.43). Above ⇠2.5,crit = 0.43, there is no black hole con-
tribution.

other currently-available suites of pre-supernova progenitor
models, we determine the average neutrino flux employing
the pre-supernova models of Woosley & Heger (2007). This
suite of progenitors in general has similar or higher com-
pactness compared to WHW02, reaching a peak compact-
ness of ⇠2.5 ⇡ 0.54 compared to 0.43 for WHW02. Also, a
second peak in compactness at ⇠ 40M� is evident, in addi-
tion to the peak around ⇠ 20M� that is seen in WHW02
and Sukhbold & Woosley (2014). These features manifest as
a harder predicted average neutrino spectra, because higher
compactness yields higher neutrino luminosities and mean
energies (Figure 3). In Section 3.4, we show how this a↵ects
the DSNB event rate prediction.

3.3 DSNB flux prediction

The DSNB is determined by integrating the cosmic history
of the comoving core-collapse rate, RCC (z), by the mean neu-
trino spectrum per core collapse, dN/dE, appropriately red-
shifted, over cosmic time (see, e.g., Beacom 2010, for a recent
review),

d�
dE
= c

π
RCC(z)

dN
dE 0 (1 + z)

���� dt
dz

���� dz , (14)

where E 0 = E(1+z) and |dz/dt | = H0(1+z)[⌦m(1+z)3+⌦⇤]1/2.
We include contributions out to a redshift of 5, which is
su�ciently large to include the majority of the DSNB flux
(Ando & Sato 2004) for ⇠ 10 MeV neutrino energy threshold.
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Figure 1. Time evolution of neutrino spectral parameters for the
core collapse of the 35M� progenitor leading to black hole for-
mation at 630 msec post bounce. The neutrino luminosity (top
panel), mean energy of neutrinos (middle panel), and shape pa-
rameter ↵ (bottom panel) are shown for ⌫e (red solid), ⌫̄e (blue
dashed), and ⌫µ (black dot-dashed); the ⌫̄µ are not shown for
clarity but are quantitatively very similar to ⌫µ . All quantities
are shown as functions of time after the core bounce.

emitted from the collapse of the 35M� star as an example.
The duration of neutrino burst is short, ⇠ 630 msec for this
case, from core bounce until the termination due to black
hole formation. The rapid increase of the mean energies of
all neutrino species during the short burst is the hallmark
signature of the evolution towards black hole formation. As
the protoneutron star grows massive due to mass accretion,
it becomes compact with increasing density and tempera-
ture. Accordingly, the energies of neutrinos rapidly increase
from the moment of core bounce until the formation of the
back hole.

The initial behavior during core bounce is similar to
the ordinary case of collapse to neutron stars, i.e., neutrinos
showing the usual peaks due to the neutronization burst (in
⌫e) and the passage of shock wave. As in the neutron star
case, the ⌫e and ⌫̄e luminosities originate from the energy
release by neutrinos through electron (positron) absorptions
in the accreting matter and show variations according to
the accretion rate. A peak in the energy of ⌫µ is observed
around the timing of the neutronization burst, which is due
to the passage of the shock wave through neutrinospheres.
High-energy neutrinos are created at high temperature due
to the shock passage right after core bounce. Those neutri-
nos outwardly propagate from the neutrino thermal sphere
and remain without degrading energy until they are emit-
ted from neutrino scattering sphere. This brief hardening
of spectra leads to a temporary drop of the shape parame-
ter. This phenomenon has also been seen in previous studies
(Liebendoerfer et al. 2005; Buras et al. 2006; Lentz et al.
2012b) and is not seen with energy changing reactions.
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Figure 2. The same as Figure 1, but for 2D simulation. The 23M�
progenitor is chosen for comparison, since it has the highest ⇠2.5

among the 101 solar metallicity progenitors of the WHW02 suite
used in this study. The vertical dashed line shows the transition
from numerical hydrodynamic to analytic extrapolation regimes.

2.2 Axis-symmetric simulations

We adopt two sets of 2D axis–symmetric core-collapse mod-
els. In these 2D models, the same EOS (LS EOS with
K = 220 MeV) was adopted as in our 1D models, while
self-gravity and neutrino transport were solved in di↵erent
ways. The first set of simulations we adopt are from Naka-
mura et al. (2015). In these models, self-gravity was com-
puted with a Newtonian monopole approximation, and neu-
trino transport for electron and anti–electron neutrinos (⌫e
and ⌫̄e) were performed with an energy-dependent treatment
of neutrino transport based on the isotropic di↵usion source
approximation (IDSA; Liebendoerfer et al. 2009) with a ray-
by-ray approach. This approximation has a high computa-
tional e�ciency in parallelization, which allows to explore
systematic features of neutrino emission for a large num-
ber of supernova models. Regarding heavy–lepton neutrinos
(⌫x = ⌫µ, ⌫⌧, ⌫̄µ, ⌫̄⌧), a leakage scheme was employed to in-
clude cooling processes. Since the leakage scheme does not
enable us to obtain spectral information, we assume that the
average energy of ⌫x is given by the temperature of matter
at the corresponding average neutrinosphere.

In Nakamura et al. (2015), 378 non-rotating progen-
itor stars from WHW02 covering zero-age main sequence
(ZAMS) mass from 10.8 M� to 75 M� with metallicity from
zero to solar value were investigated. From these, we choose
101 supernova models with solar metallicity for the current
study. This is because lower metallicity supernovae are dom-
inant in distant galaxies where the neutrinos would su↵er
from energy redshift and thus contribute little to the de-
tectable DSNB signal. The chosen 101 models cover a wide
range of compactness (⇠2.5 from 0.0033 for the 10.8 M�
model to 0.434 for the 23.0 M� model).
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Figure 3. Neutrino emission parameters for 2D simulations: to-
tal energetics (upper panel), mean energy (middle panel), and
shape parameter (lower panel) shown for ⌫e (red circles), ⌫̄e (blue
squares), and ⌫x (black diamonds). Each point is a core-collapse
simulation, plotted at the value of the progenitor compactness
⇠2.5.

(2016). Since the high energy component of the neutrino
distribution is essential to determine the shape parameter,
the inclusion of improved neutrino reactions such as inelas-
tic scatterings on nucleons and nuclei, which contribute to
down-scattering of high energy neutrinos, is important for
the detailed prediction of the neutrino spectra.

3 DSNB PREDICTION AND DETECTION

3.1 Characterizing the neutrino emission

For each 2D core-collapse simulation, we estimate the to-
tal energy liberated in the form of neutrinos and the flux-
weighted mean neutrino energy as,

E tot
⌫ =

π
L⌫(t)dt , (10)

hE⌫i =

Ø
E⌫(t) €N⌫(t)dtØ €N⌫(t)dt

, (11)

where €N⌫ = L⌫/E⌫ . The time integrals are performed until
100 sec post bounce. We obtain the spectral shape parameter
h↵i by fitting the time-summed neutrino spectrum to the
pinched Fermi-Dirac functional form (Keil et al. 2003),

f (E) = (1 + h↵i)(1+h↵i)
�(1 + h↵i)

E tot
⌫ E h↵i

hE⌫i2+h↵i
exp


�(1 + h↵i) E

hE⌫i

�
, (12)

where hE⌫i is fixed to the flux-weighted average neutrino
energy, Eq. (11). This yields a better spectral fit than us-
ing a flux-weighted shape parameter analogous to the mean
energy of Eq. (11).

Figure 3 shows the spectral parameters (E tot, hE⌫i, h↵i)
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Figure 4. The same as Figure 3 but showing in bold filled sym-
bols the time-integrated spectral parameters for the simulations
of Summa et al. (2016).

separately for ⌫e, ⌫̄e, and ⌫x , plotted as functions of the com-
pactness ⇠2.5 of the progenitor. The total neutrino energet-
ics show a clear increase with the progenitor compactness,
consistent with previous studies: high compactness leads to
higher mass accretion rate, which leads to larger gravita-
tional energy liberation and hence higher neutrino energet-
ics (Nakamura et al. 2015). We also see a clear hierarchy in
the total energetics in neutrino flavor, ⌫x < ⌫̄e < ⌫e. The ⌫e
is largest due to the additional contribution from the delep-
tonization of the progenitor core. For mean energy, a mild
increase with compactness is evident. We also see the usual
hierarchy with ⌫e being the lowest and ⌫x being the high-
est. The shape parameter h↵i shows little variation between
di↵erent compactness or flavor, consistently falling between
3 to 4. As noted in section 2.2, we do not determine h↵i
for ⌫x due to limitations in our simulation setup. However,
as discussed in section 2.3, we expect it to be smaller than
the values for ⌫e or ⌫̄e, and we will explore values between
1.0–4.0 in this paper.

In Figure 4 we plot on the same data the time-integrated
spectral parameters for the 18 2D core-collapse simulations
of Summa et al. (2016). The same qualitative trends are
observed. For example, the hierarchy in the mean energy
and alpha with neutrino species is observed. Most impor-
tantly, the same trends with compactness are observed: rise
in the total neutrino energetics, mild increase in neutrino
average energies, and weak dependence for the shape pa-
rameter. The flavor hierarchy of the total energetics is more
modest in the Summa et al. (2016) models by construction:
since the Summa et al. (2016) simulations terminate earlier
and we assume the gravitational binding energy liberated
in the late-phase is equipartitioned in neutrino species. One
notable di↵erence is seen in the systematically lower shape
parameters. This is not surprising since as discussed in Sec-
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The neutrino luminosity, mean energy and the shape
parameter are defined in the same manner as in our 1D
models (except ⌫x mean energy and shape parameter as de-
scribed above). Since the 2D simulations in Nakamura et al.
(2015) were terminated at ⇠ 1 s after bounce, the neutrino
emissions during the cooling phase of the protoneutron star
were not fully solved. More than half of the total neutrino
energy is expected to be emitted after the end of the simula-
tions. Thus, we extrapolate the neutrino properties based on
some assumptions: (1) the core radius contracts according to
R(t) = Rf+(Ri�Rf)e�t/t0 (Arcones et al. 2007), where the final
core radius Rf is set to be 15 km, and the initial radius Ri and
the contraction timescale t0 are found by fitting this function
to the time evolution of the core radius during the simula-
tions; (2) the gravitational energy released per unit time by
the core contraction is converted to the loss rate of neu-
trino energy (total neutrino luminosity) with a conversion
e�ciency � which is of order unity and determined at the
final time of each simulation; (3) the average neutrino ener-
gies and relative luminosity ratios among neutrino flavors are
fixed to the final value of each simulation. In this extrapola-
tion process we ignore the contribution of accreting matter
to the neutrino emission, which is a good assumption for the
late phase of protoneutron star evolution. Long-term core-
collapse simulations taking into account energy-dependent
neutrino transport and core evolution will improve our su-
pernova neutrino models in the future.

The second set of 2D simulations are from Summa et al.
(2016). In these models, self-gravity is computed using gen-
eral relativistic monopole corrections as described in Marek
et al. (2006), and neutrino transport is solved with a ray-by-
ray approximation along radial rays using a variable Edding-
ton factor method (e.g., Buras et al. 2006) for all neutrinos.
A total of 18 progenitor models in the ZAMS mass range
11.2–28M� is selected from WHW02 and Woosley & Heger
(2007), spanning compactness ⇠2.5 from 0.005 (for the 11.2
M� model) to 0.33 (for the 25.0 M� model). Since the num-
ber of progenitor is smaller, we mainly adopt the simulation
suite of Nakamura et al. (2015) for this paper; however, the
Summa et al. (2016) models serve as an excellent compari-
son to see potential systematic di↵erences due to numerical
treatments.

We compute the neutrino luminosity, mean energy and
the shape parameter as defined in the same manner as in our
previous models with one modification. Since the Summa
et al. (2016) models were terminated typically at ⇠ 0.5 s
after bounce, there is less post-accretion phase data to per-
form a reliable fit to the late-time radius evolution following
the prescription of Arcones et al. (2007). Furthermore, in
some cases the protoneutron mass is still visibly increasing
at the final simulation time step. We therefore adopt the
following assumptions to compute the late-time emission,
noting that the emphasis is to obtain time-integrated quan-
tities: (1) the core radius contracts from the radius at the
final time step to a final radius of 15 km; (2) the mass grows
according to M(r) = M0 + M1(1 � e�t/⌧M ), where M0, M1,
and ⌧M are found by fitting this function to the time evolu-
tion of the protoneutron mass; (3) the gravitational binding
energy released after the final simulation step is equipar-
titioned between all neutrino flavors; and (4) the average
neutrino energies and pinching factors are fixed to the final
value of each simulation.

2.3 Similarities and di↵erences between 1D and

2D

We have utilized 1D and 2D core-collapse simulations to
model core collapse to black holes and neutron stars, re-
spectively. Ideally, we want any di↵erences between the sim-
ulation suites to reflect only the di↵erent outcomes of core
collapse. However, the di↵erent implementations of micro-
physics and numerical treatments can also a↵ect the neu-
trino emission. While the simulation suites share many core
microphysics implementations, the list of what are consid-
ered necessary interactions and their implementations are
topics of ongoing research. Here, we compare and contrast
the results of our 1D and 2D simulations, but this caveat
should be kept in mind. Future systematic studies, informed
by state-of-the-art focused simulations, will continuously im-
prove predictions.

Sample neutrino emission properties are shown in Fig-
ures 1 and 2 for collapse to black holes and neutron stars,
respectively. Figure 1 shows a 35M� progenitor with com-
pactness ⇠2.5 ⇡ 0.52. Since there is no progenitor in our 2D
suites with such a high compactness, we compare with the
the largest available: the 23M� progenitor with ⇠2.5 = 0.43.
The initial bounce phase is similar in both 1D and 2D: a
strong neutronization burst signal (in ⌫e), followed by the
rise in ⌫̄e and ⌫x emissions; and the expected hierarchy in
neutrino luminosities (⌫x < ⌫̄e < ⌫e) and mean energies
(⌫e < ⌫̄e < ⌫x). However, the failed explosion necessarily ex-
periences high post-bounce mass accretion, which drives the
protoneutron star above its mass limit (at ⇠ 630 msec post
bounce for the 35M� progenitor). By contrast, the shock re-
vival experienced in the 2D simulation leads to dramatically
reduced mass accretion. The di↵erence in mass accretion is
responsible for significantly larger neutrino luminosities and
energies in the failed explosion.

Di↵erences can also be seen in the spectral shape pa-
rameter ↵. Systematically smaller values are obtained for
failed explosions for ⌫e and ⌫̄e (we cannot compare the shape
parameter of ⌫x due to a lack of detailed transport for ⌫x
in Nakamura’s 2D simulations). Comparing flavors, the ⌫x
shows significantly smaller shape parameter than ⌫e and ⌫̄e.
To see whether these di↵erences are real or numerical, we
can compare the results of our 2D simulation with that in
Figure 10 of Mirizzi et al. (2016), where the core collapse of
a 27M� progenitor was simulated using LS220 EOS. They
find the shape parameter decreases, from around 4–5 to ⇠ 3

for ⌫e and ⌫̄e, and from around ⇠ 3 to ⇠ 2 for ⌫x , during the
first second post bounce. This behavior confirms that in-
deed the ⌫x should have lower shape parameters than ⌫e or
⌫̄e. This is primarily driven by the ⌫x emission arising from
deeper in the protoneutron star with a larger neutrinosphere
width, which results in the contribution of higher temper-
ature emissions and hence a smaller ↵. Thus, we conclude
that it is reasonable that the shape parameter shows an even
larger suppression in failed explosions where the larger accre-
tion rates heat the protoneutron star and neutrinospheres.
Additionally, as a more detailed comparison we also ran a
simulation of the 27M� progenitor with LS220 EOS using
a three flavor IDSA transport scheme (Takiwaki et al., in
prep). We found that ↵ for ⌫e and ⌫̄e start around 4–5 and
drop to 3–4 by ⇠ 1 sec post bounce, while the ⌫x falls from
⇠ 2 to ⇠ 1, similar in behavior to the results of Mirizzi et al.
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Figure 1. Time evolution of neutrino spectral parameters for the
core collapse of the 35M� progenitor leading to black hole for-
mation at 630 msec post bounce. The neutrino luminosity (top
panel), mean energy of neutrinos (middle panel), and shape pa-
rameter ↵ (bottom panel) are shown for ⌫e (red solid), ⌫̄e (blue
dashed), and ⌫µ (black dot-dashed); the ⌫̄µ are not shown for
clarity but are quantitatively very similar to ⌫µ . All quantities
are shown as functions of time after the core bounce.

emitted from the collapse of the 35M� star as an example.
The duration of neutrino burst is short, ⇠ 630 msec for this
case, from core bounce until the termination due to black
hole formation. The rapid increase of the mean energies of
all neutrino species during the short burst is the hallmark
signature of the evolution towards black hole formation. As
the protoneutron star grows massive due to mass accretion,
it becomes compact with increasing density and tempera-
ture. Accordingly, the energies of neutrinos rapidly increase
from the moment of core bounce until the formation of the
back hole.

The initial behavior during core bounce is similar to
the ordinary case of collapse to neutron stars, i.e., neutrinos
showing the usual peaks due to the neutronization burst (in
⌫e) and the passage of shock wave. As in the neutron star
case, the ⌫e and ⌫̄e luminosities originate from the energy
release by neutrinos through electron (positron) absorptions
in the accreting matter and show variations according to
the accretion rate. A peak in the energy of ⌫µ is observed
around the timing of the neutronization burst, which is due
to the passage of the shock wave through neutrinospheres.
High-energy neutrinos are created at high temperature due
to the shock passage right after core bounce. Those neutri-
nos outwardly propagate from the neutrino thermal sphere
and remain without degrading energy until they are emit-
ted from neutrino scattering sphere. This brief hardening
of spectra leads to a temporary drop of the shape parame-
ter. This phenomenon has also been seen in previous studies
(Liebendoerfer et al. 2005; Buras et al. 2006; Lentz et al.
2012b) and is not seen with energy changing reactions.
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Figure 2. The same as Figure 1, but for 2D simulation. The 23M�
progenitor is chosen for comparison, since it has the highest ⇠2.5

among the 101 solar metallicity progenitors of the WHW02 suite
used in this study. The vertical dashed line shows the transition
from numerical hydrodynamic to analytic extrapolation regimes.

2.2 Axis-symmetric simulations

We adopt two sets of 2D axis–symmetric core-collapse mod-
els. In these 2D models, the same EOS (LS EOS with
K = 220 MeV) was adopted as in our 1D models, while
self-gravity and neutrino transport were solved in di↵erent
ways. The first set of simulations we adopt are from Naka-
mura et al. (2015). In these models, self-gravity was com-
puted with a Newtonian monopole approximation, and neu-
trino transport for electron and anti–electron neutrinos (⌫e
and ⌫̄e) were performed with an energy-dependent treatment
of neutrino transport based on the isotropic di↵usion source
approximation (IDSA; Liebendoerfer et al. 2009) with a ray-
by-ray approach. This approximation has a high computa-
tional e�ciency in parallelization, which allows to explore
systematic features of neutrino emission for a large num-
ber of supernova models. Regarding heavy–lepton neutrinos
(⌫x = ⌫µ, ⌫⌧, ⌫̄µ, ⌫̄⌧), a leakage scheme was employed to in-
clude cooling processes. Since the leakage scheme does not
enable us to obtain spectral information, we assume that the
average energy of ⌫x is given by the temperature of matter
at the corresponding average neutrinosphere.

In Nakamura et al. (2015), 378 non-rotating progen-
itor stars from WHW02 covering zero-age main sequence
(ZAMS) mass from 10.8 M� to 75 M� with metallicity from
zero to solar value were investigated. From these, we choose
101 supernova models with solar metallicity for the current
study. This is because lower metallicity supernovae are dom-
inant in distant galaxies where the neutrinos would su↵er
from energy redshift and thus contribute little to the de-
tectable DSNB signal. The chosen 101 models cover a wide
range of compactness (⇠2.5 from 0.0033 for the 10.8 M�
model to 0.434 for the 23.0 M� model).
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Figure 5. Same as Figure 3 but for failed explosions. Note the
di↵erent ranges in both horizontal and vertical axes. From small
to large compactness, points represent the solar metal 40M�
of WHW02, solar metal 25M� of WHW02, zero metal 33M�
of WHW02, zero metal 35M� of WHW02, solar metal 40M�
of WW95, solar metal 40M� of WW95 updated in Heger et
al. (2001), and low metal 30M� of Nakazato et al. (2013). Spec-
tral shape parameter are shown only when relevant information
was available. Straight lines are linear fits through the spectral
parameters.

tion 2.3, the shape parameter is particularly sensitive to the
details of included microphysics.

We next repeat the exercise for collapse to black holes,
shown as solid symbols in Figure 5. For these, the time in-
tegral is performed until the moment of black hole forma-
tion. For consistency, we collect simulations from the liter-
ature that adopt a LS EOS with K = 220 MeV. Hempel
et al. (2012) simulated the collapse of the solar metallic-
ity 40M� star of WW95 updated in Heger et al. (2001),
whose ⇠2.5 ⇡ 0.59. Nakazato et al. (2013) followed black hole
formation in their low metal 30M� progenitor, whose com-
pactness is ⇠2.5 ⇡ 0.74 (private communication). Hudepohl
(2014) simulated the collapse of the solar metal 25M� and
40M� progenitors of WHW02, with compactness ⇠2.5 ⇡ 0.31

and ⇠2.5 ⇡ 026, respectively.
To this list we add simulations of the solar metallicity

40M� star of WW95 with ⇠2.5 ⇡ 0.55 (note the di↵erent
compactness from the version updated in Heger et al. 2001),
as well as the 33M� and 35M� zero-metallicity progenitors
of WHW02 with ⇠2.5 ⇡ 0.39 and 0.52, respectively. Due to
the limited number of black hole forming collapse simula-
tions, we fit the neutrino spectral parameters by a linear
function of ⇠2.5, separately for ⌫e, ⌫̄e, and ⌫x . These are
shown by the solid lines in Figure 5. We find the neutrino
energetics tend to decrease with compactness, which can be
understood by the fact larger compactness progenitors have
shorter durations for black hole formation; it is well approx-
imated as / ⇠�3/2 (e.g., O’Connor & Ott 2011). Although

the shorter duration is partially compensated by higher lu-
minosities, the duration dominates the overall e↵ect. The
neutrino mean energies show a flat (for ⌫e and ⌫̄e) or rise
(for ⌫x) with compactness. The rise in ⌫x mean energy is
the hallmark signature of black hole formation: the rapid
mass accretion increases the protoneutron star density and
temperature, which is reflected in ⌫x ; the other flavors by
comparison have larger neutrinosphere radii and are less af-
fected. For example, the ⌫e, ⌫̄e, and ⌫x neutrinosphere radii
are 60, 58, and 30 km for the neutrino energy of 34 MeV at
400 msec after bounce in the case of 35M�. The protoneu-
tron star radii shrinks to ⇠30 km (⇢ > 10

10 g/cm3) by this
time. The shape parameter shows a weak tendency to in-
crease with compactness, which can be understood by the
decrease of duration time with compactness. This is because
the shape parameter has initially high values and a plateau
of low values in the late phase, so shorter duration time re-
sults in larger values of the time-integrated shape parameter.

3.2 IMF-weighted average neutrino spectrum

The average neutrino spectrum per core collapse, dN/dE,
can be derived by evaluating the contribution of a given pro-
genitor by the initial mass function (IMF). Since the IMF
falls steeply with progenitor mass, contributions from lower
mass progenitors become important. We use the ZAMS mass
bins used in WHW02, which runs from 10.8M� to 75M�.
Progenitors with initial masses below this range evolve and
collapse as ONeMg cores (Jones et al. 2013), and is an
important population of the DSNB (e.g., Mathews et al.
2014). We include this population based on the long-term
core-collapse simulation of Hudepohl et al. (2010) who used
the 8.8M� progenitor of Nomoto (1984, 1987). The time-
integrated neutrino spectral parameters (not shown in Fig-
ure 3) are (E tot

⌫ , hE⌫i, h↵i) = (2.07, 8.05, 2.53), (2.08, 9.13, 1.89),
and (2.32, 9.83, 1.43) for ⌫e, ⌫̄e, and ⌫x , respectively, in the
same units are shown in Figure 3. For progenitors above
75M� we extend the 75M� mass bin to 100M�.

The average neutrino spectrum is then obtained as,

dN
dE
=
’
i

Ø
�Mi

 (M)dMØ
100

8
 (M)dM

fi(E) , (13)

where �Mi is the mass range of mass bin i,  (M) = dn/dM
is the IMF, and fi(E) is the spectrum as defined in Eq. (12)
with neutrino spectral parameters (E tot

⌫ , hE⌫i, h↵i) for the
core collapse of a progenitor of mass Mi . Since we charac-
terize the spectral parameters in compactness, yet the abun-
dance of progenitors is determined by its ZAMS mass, we re-
quire knowledge of the distribution of compactness in mass,
⇠(M). We adopt the distribution from the pre-supernova
models of WHW02, but explore other possibilities later.
Finally, we adopt a Salpeter IMF with  (M) / M⌘ with
⌘ = �2.35 in the mass range 8–100M�, but explore a liberal
range from �2.15 to �2.45 (Bastian et al. 2010) in our final
calculations.

The resulting average DSNB flux is shown by the solid
curves in Figure 6, for the ⌫̄e (top panel) and ⌫x (bottom
panel). The average ⌫̄e spectrum can be well modeled by the
pinched Fermi-Dirac spectral function with total energetics
4.3⇥ 10

52 erg, mean energy 14.6 MeV, and shape parameter
3.3. The ⌫x depends on the assumed shape parameter. In
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Figure 5. Same as Figure 3 but for failed explosions. Note the
di↵erent ranges in both horizontal and vertical axes. From small
to large compactness, points represent the solar metal 40M�
of WHW02, solar metal 25M� of WHW02, zero metal 33M�
of WHW02, zero metal 35M� of WHW02, solar metal 40M�
of WW95, solar metal 40M� of WW95 updated in Heger et
al. (2001), and low metal 30M� of Nakazato et al. (2013). Spec-
tral shape parameter are shown only when relevant information
was available. Straight lines are linear fits through the spectral
parameters.

tion 2.3, the shape parameter is particularly sensitive to the
details of included microphysics.

We next repeat the exercise for collapse to black holes,
shown as solid symbols in Figure 5. For these, the time in-
tegral is performed until the moment of black hole forma-
tion. For consistency, we collect simulations from the liter-
ature that adopt a LS EOS with K = 220 MeV. Hempel
et al. (2012) simulated the collapse of the solar metallic-
ity 40M� star of WW95 updated in Heger et al. (2001),
whose ⇠2.5 ⇡ 0.59. Nakazato et al. (2013) followed black hole
formation in their low metal 30M� progenitor, whose com-
pactness is ⇠2.5 ⇡ 0.74 (private communication). Hudepohl
(2014) simulated the collapse of the solar metal 25M� and
40M� progenitors of WHW02, with compactness ⇠2.5 ⇡ 0.31

and ⇠2.5 ⇡ 026, respectively.
To this list we add simulations of the solar metallicity

40M� star of WW95 with ⇠2.5 ⇡ 0.55 (note the di↵erent
compactness from the version updated in Heger et al. 2001),
as well as the 33M� and 35M� zero-metallicity progenitors
of WHW02 with ⇠2.5 ⇡ 0.39 and 0.52, respectively. Due to
the limited number of black hole forming collapse simula-
tions, we fit the neutrino spectral parameters by a linear
function of ⇠2.5, separately for ⌫e, ⌫̄e, and ⌫x . These are
shown by the solid lines in Figure 5. We find the neutrino
energetics tend to decrease with compactness, which can be
understood by the fact larger compactness progenitors have
shorter durations for black hole formation; it is well approx-
imated as / ⇠�3/2 (e.g., O’Connor & Ott 2011). Although

the shorter duration is partially compensated by higher lu-
minosities, the duration dominates the overall e↵ect. The
neutrino mean energies show a flat (for ⌫e and ⌫̄e) or rise
(for ⌫x) with compactness. The rise in ⌫x mean energy is
the hallmark signature of black hole formation: the rapid
mass accretion increases the protoneutron star density and
temperature, which is reflected in ⌫x ; the other flavors by
comparison have larger neutrinosphere radii and are less af-
fected. For example, the ⌫e, ⌫̄e, and ⌫x neutrinosphere radii
are 60, 58, and 30 km for the neutrino energy of 34 MeV at
400 msec after bounce in the case of 35M�. The protoneu-
tron star radii shrinks to ⇠30 km (⇢ > 10

10 g/cm3) by this
time. The shape parameter shows a weak tendency to in-
crease with compactness, which can be understood by the
decrease of duration time with compactness. This is because
the shape parameter has initially high values and a plateau
of low values in the late phase, so shorter duration time re-
sults in larger values of the time-integrated shape parameter.

3.2 IMF-weighted average neutrino spectrum

The average neutrino spectrum per core collapse, dN/dE,
can be derived by evaluating the contribution of a given pro-
genitor by the initial mass function (IMF). Since the IMF
falls steeply with progenitor mass, contributions from lower
mass progenitors become important. We use the ZAMS mass
bins used in WHW02, which runs from 10.8M� to 75M�.
Progenitors with initial masses below this range evolve and
collapse as ONeMg cores (Jones et al. 2013), and is an
important population of the DSNB (e.g., Mathews et al.
2014). We include this population based on the long-term
core-collapse simulation of Hudepohl et al. (2010) who used
the 8.8M� progenitor of Nomoto (1984, 1987). The time-
integrated neutrino spectral parameters (not shown in Fig-
ure 3) are (E tot

⌫ , hE⌫i, h↵i) = (2.07, 8.05, 2.53), (2.08, 9.13, 1.89),
and (2.32, 9.83, 1.43) for ⌫e, ⌫̄e, and ⌫x , respectively, in the
same units are shown in Figure 3. For progenitors above
75M� we extend the 75M� mass bin to 100M�.

The average neutrino spectrum is then obtained as,

dN
dE
=
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 (M)dMØ
100

8
 (M)dM

fi(E) , (13)

where �Mi is the mass range of mass bin i,  (M) = dn/dM
is the IMF, and fi(E) is the spectrum as defined in Eq. (12)
with neutrino spectral parameters (E tot

⌫ , hE⌫i, h↵i) for the
core collapse of a progenitor of mass Mi . Since we charac-
terize the spectral parameters in compactness, yet the abun-
dance of progenitors is determined by its ZAMS mass, we re-
quire knowledge of the distribution of compactness in mass,
⇠(M). We adopt the distribution from the pre-supernova
models of WHW02, but explore other possibilities later.
Finally, we adopt a Salpeter IMF with  (M) / M⌘ with
⌘ = �2.35 in the mass range 8–100M�, but explore a liberal
range from �2.15 to �2.45 (Bastian et al. 2010) in our final
calculations.

The resulting average DSNB flux is shown by the solid
curves in Figure 6, for the ⌫̄e (top panel) and ⌫x (bottom
panel). The average ⌫̄e spectrum can be well modeled by the
pinched Fermi-Dirac spectral function with total energetics
4.3⇥ 10

52 erg, mean energy 14.6 MeV, and shape parameter
3.3. The ⌫x depends on the assumed shape parameter. In
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Figure 5. Same as Figure 3 but for failed explosions. Note the
di↵erent ranges in both horizontal and vertical axes. From small
to large compactness, points represent the solar metal 40M�
of WHW02, solar metal 25M� of WHW02, zero metal 33M�
of WHW02, zero metal 35M� of WHW02, solar metal 40M�
of WW95, solar metal 40M� of WW95 updated in Heger et
al. (2001), and low metal 30M� of Nakazato et al. (2013). Spec-
tral shape parameter are shown only when relevant information
was available. Straight lines are linear fits through the spectral
parameters.

tion 2.3, the shape parameter is particularly sensitive to the
details of included microphysics.

We next repeat the exercise for collapse to black holes,
shown as solid symbols in Figure 5. For these, the time in-
tegral is performed until the moment of black hole forma-
tion. For consistency, we collect simulations from the liter-
ature that adopt a LS EOS with K = 220 MeV. Hempel
et al. (2012) simulated the collapse of the solar metallic-
ity 40M� star of WW95 updated in Heger et al. (2001),
whose ⇠2.5 ⇡ 0.59. Nakazato et al. (2013) followed black hole
formation in their low metal 30M� progenitor, whose com-
pactness is ⇠2.5 ⇡ 0.74 (private communication). Hudepohl
(2014) simulated the collapse of the solar metal 25M� and
40M� progenitors of WHW02, with compactness ⇠2.5 ⇡ 0.31

and ⇠2.5 ⇡ 026, respectively.
To this list we add simulations of the solar metallicity

40M� star of WW95 with ⇠2.5 ⇡ 0.55 (note the di↵erent
compactness from the version updated in Heger et al. 2001),
as well as the 33M� and 35M� zero-metallicity progenitors
of WHW02 with ⇠2.5 ⇡ 0.39 and 0.52, respectively. Due to
the limited number of black hole forming collapse simula-
tions, we fit the neutrino spectral parameters by a linear
function of ⇠2.5, separately for ⌫e, ⌫̄e, and ⌫x . These are
shown by the solid lines in Figure 5. We find the neutrino
energetics tend to decrease with compactness, which can be
understood by the fact larger compactness progenitors have
shorter durations for black hole formation; it is well approx-
imated as / ⇠�3/2 (e.g., O’Connor & Ott 2011). Although

the shorter duration is partially compensated by higher lu-
minosities, the duration dominates the overall e↵ect. The
neutrino mean energies show a flat (for ⌫e and ⌫̄e) or rise
(for ⌫x) with compactness. The rise in ⌫x mean energy is
the hallmark signature of black hole formation: the rapid
mass accretion increases the protoneutron star density and
temperature, which is reflected in ⌫x ; the other flavors by
comparison have larger neutrinosphere radii and are less af-
fected. For example, the ⌫e, ⌫̄e, and ⌫x neutrinosphere radii
are 60, 58, and 30 km for the neutrino energy of 34 MeV at
400 msec after bounce in the case of 35M�. The protoneu-
tron star radii shrinks to ⇠30 km (⇢ > 10

10 g/cm3) by this
time. The shape parameter shows a weak tendency to in-
crease with compactness, which can be understood by the
decrease of duration time with compactness. This is because
the shape parameter has initially high values and a plateau
of low values in the late phase, so shorter duration time re-
sults in larger values of the time-integrated shape parameter.

3.2 IMF-weighted average neutrino spectrum

The average neutrino spectrum per core collapse, dN/dE,
can be derived by evaluating the contribution of a given pro-
genitor by the initial mass function (IMF). Since the IMF
falls steeply with progenitor mass, contributions from lower
mass progenitors become important. We use the ZAMS mass
bins used in WHW02, which runs from 10.8M� to 75M�.
Progenitors with initial masses below this range evolve and
collapse as ONeMg cores (Jones et al. 2013), and is an
important population of the DSNB (e.g., Mathews et al.
2014). We include this population based on the long-term
core-collapse simulation of Hudepohl et al. (2010) who used
the 8.8M� progenitor of Nomoto (1984, 1987). The time-
integrated neutrino spectral parameters (not shown in Fig-
ure 3) are (E tot

⌫ , hE⌫i, h↵i) = (2.07, 8.05, 2.53), (2.08, 9.13, 1.89),
and (2.32, 9.83, 1.43) for ⌫e, ⌫̄e, and ⌫x , respectively, in the
same units are shown in Figure 3. For progenitors above
75M� we extend the 75M� mass bin to 100M�.

The average neutrino spectrum is then obtained as,
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where �Mi is the mass range of mass bin i,  (M) = dn/dM
is the IMF, and fi(E) is the spectrum as defined in Eq. (12)
with neutrino spectral parameters (E tot

⌫ , hE⌫i, h↵i) for the
core collapse of a progenitor of mass Mi . Since we charac-
terize the spectral parameters in compactness, yet the abun-
dance of progenitors is determined by its ZAMS mass, we re-
quire knowledge of the distribution of compactness in mass,
⇠(M). We adopt the distribution from the pre-supernova
models of WHW02, but explore other possibilities later.
Finally, we adopt a Salpeter IMF with  (M) / M⌘ with
⌘ = �2.35 in the mass range 8–100M�, but explore a liberal
range from �2.15 to �2.45 (Bastian et al. 2010) in our final
calculations.

The resulting average DSNB flux is shown by the solid
curves in Figure 6, for the ⌫̄e (top panel) and ⌫x (bottom
panel). The average ⌫̄e spectrum can be well modeled by the
pinched Fermi-Dirac spectral function with total energetics
4.3⇥ 10

52 erg, mean energy 14.6 MeV, and shape parameter
3.3. The ⌫x depends on the assumed shape parameter. In
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Figure 3. Neutrino emission parameters for 2D simulations: to-
tal energetics (upper panel), mean energy (middle panel), and
shape parameter (lower panel) shown for ⌫e (red circles), ⌫̄e (blue
squares), and ⌫x (black diamonds). Each point is a core-collapse
simulation, plotted at the value of the progenitor compactness
⇠2.5.

(2016). Since the high energy component of the neutrino
distribution is essential to determine the shape parameter,
the inclusion of improved neutrino reactions such as inelas-
tic scatterings on nucleons and nuclei, which contribute to
down-scattering of high energy neutrinos, is important for
the detailed prediction of the neutrino spectra.

3 DSNB PREDICTION AND DETECTION

3.1 Characterizing the neutrino emission

For each 2D core-collapse simulation, we estimate the to-
tal energy liberated in the form of neutrinos and the flux-
weighted mean neutrino energy as,

E tot
⌫ =

π
L⌫(t)dt , (10)

hE⌫i =

Ø
E⌫(t) €N⌫(t)dtØ €N⌫(t)dt

, (11)

where €N⌫ = L⌫/E⌫ . The time integrals are performed until
100 sec post bounce. We obtain the spectral shape parameter
h↵i by fitting the time-summed neutrino spectrum to the
pinched Fermi-Dirac functional form (Keil et al. 2003),

f (E) = (1 + h↵i)(1+h↵i)
�(1 + h↵i)
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exp


�(1 + h↵i) E

hE⌫i

�
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where hE⌫i is fixed to the flux-weighted average neutrino
energy, Eq. (11). This yields a better spectral fit than us-
ing a flux-weighted shape parameter analogous to the mean
energy of Eq. (11).

Figure 3 shows the spectral parameters (E tot, hE⌫i, h↵i)
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Figure 4. The same as Figure 3 but showing in bold filled sym-
bols the time-integrated spectral parameters for the simulations
of Summa et al. (2016).

separately for ⌫e, ⌫̄e, and ⌫x , plotted as functions of the com-
pactness ⇠2.5 of the progenitor. The total neutrino energet-
ics show a clear increase with the progenitor compactness,
consistent with previous studies: high compactness leads to
higher mass accretion rate, which leads to larger gravita-
tional energy liberation and hence higher neutrino energet-
ics (Nakamura et al. 2015). We also see a clear hierarchy in
the total energetics in neutrino flavor, ⌫x < ⌫̄e < ⌫e. The ⌫e
is largest due to the additional contribution from the delep-
tonization of the progenitor core. For mean energy, a mild
increase with compactness is evident. We also see the usual
hierarchy with ⌫e being the lowest and ⌫x being the high-
est. The shape parameter h↵i shows little variation between
di↵erent compactness or flavor, consistently falling between
3 to 4. As noted in section 2.2, we do not determine h↵i
for ⌫x due to limitations in our simulation setup. However,
as discussed in section 2.3, we expect it to be smaller than
the values for ⌫e or ⌫̄e, and we will explore values between
1.0–4.0 in this paper.

In Figure 4 we plot on the same data the time-integrated
spectral parameters for the 18 2D core-collapse simulations
of Summa et al. (2016). The same qualitative trends are
observed. For example, the hierarchy in the mean energy
and alpha with neutrino species is observed. Most impor-
tantly, the same trends with compactness are observed: rise
in the total neutrino energetics, mild increase in neutrino
average energies, and weak dependence for the shape pa-
rameter. The flavor hierarchy of the total energetics is more
modest in the Summa et al. (2016) models by construction:
since the Summa et al. (2016) simulations terminate earlier
and we assume the gravitational binding energy liberated
in the late-phase is equipartitioned in neutrino species. One
notable di↵erence is seen in the systematically lower shape
parameters. This is not surprising since as discussed in Sec-
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Figure 3. Neutrino emission parameters for 2D simulations: to-
tal energetics (upper panel), mean energy (middle panel), and
shape parameter (lower panel) shown for ⌫e (red circles), ⌫̄e (blue
squares), and ⌫x (black diamonds). Each point is a core-collapse
simulation, plotted at the value of the progenitor compactness
⇠2.5.
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energy of Eq. (11).
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separately for ⌫e, ⌫̄e, and ⌫x , plotted as functions of the com-
pactness ⇠2.5 of the progenitor. The total neutrino energet-
ics show a clear increase with the progenitor compactness,
consistent with previous studies: high compactness leads to
higher mass accretion rate, which leads to larger gravita-
tional energy liberation and hence higher neutrino energet-
ics (Nakamura et al. 2015). We also see a clear hierarchy in
the total energetics in neutrino flavor, ⌫x < ⌫̄e < ⌫e. The ⌫e
is largest due to the additional contribution from the delep-
tonization of the progenitor core. For mean energy, a mild
increase with compactness is evident. We also see the usual
hierarchy with ⌫e being the lowest and ⌫x being the high-
est. The shape parameter h↵i shows little variation between
di↵erent compactness or flavor, consistently falling between
3 to 4. As noted in section 2.2, we do not determine h↵i
for ⌫x due to limitations in our simulation setup. However,
as discussed in section 2.3, we expect it to be smaller than
the values for ⌫e or ⌫̄e, and we will explore values between
1.0–4.0 in this paper.

In Figure 4 we plot on the same data the time-integrated
spectral parameters for the 18 2D core-collapse simulations
of Summa et al. (2016). The same qualitative trends are
observed. For example, the hierarchy in the mean energy
and alpha with neutrino species is observed. Most impor-
tantly, the same trends with compactness are observed: rise
in the total neutrino energetics, mild increase in neutrino
average energies, and weak dependence for the shape pa-
rameter. The flavor hierarchy of the total energetics is more
modest in the Summa et al. (2016) models by construction:
since the Summa et al. (2016) simulations terminate earlier
and we assume the gravitational binding energy liberated
in the late-phase is equipartitioned in neutrino species. One
notable di↵erence is seen in the systematically lower shape
parameters. This is not surprising since as discussed in Sec-
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Figure 5. Same as Figure 3 but for failed explosions. Note the
di↵erent ranges in both horizontal and vertical axes. From small
to large compactness, points represent the solar metal 40M�
of WHW02, solar metal 25M� of WHW02, zero metal 33M�
of WHW02, zero metal 35M� of WHW02, solar metal 40M�
of WW95, solar metal 40M� of WW95 updated in Heger et
al. (2001), and low metal 30M� of Nakazato et al. (2013). Spec-
tral shape parameter are shown only when relevant information
was available. Straight lines are linear fits through the spectral
parameters.

tion 2.3, the shape parameter is particularly sensitive to the
details of included microphysics.

We next repeat the exercise for collapse to black holes,
shown as solid symbols in Figure 5. For these, the time in-
tegral is performed until the moment of black hole forma-
tion. For consistency, we collect simulations from the liter-
ature that adopt a LS EOS with K = 220 MeV. Hempel
et al. (2012) simulated the collapse of the solar metallic-
ity 40M� star of WW95 updated in Heger et al. (2001),
whose ⇠2.5 ⇡ 0.59. Nakazato et al. (2013) followed black hole
formation in their low metal 30M� progenitor, whose com-
pactness is ⇠2.5 ⇡ 0.74 (private communication). Hudepohl
(2014) simulated the collapse of the solar metal 25M� and
40M� progenitors of WHW02, with compactness ⇠2.5 ⇡ 0.31

and ⇠2.5 ⇡ 026, respectively.
To this list we add simulations of the solar metallicity

40M� star of WW95 with ⇠2.5 ⇡ 0.55 (note the di↵erent
compactness from the version updated in Heger et al. 2001),
as well as the 33M� and 35M� zero-metallicity progenitors
of WHW02 with ⇠2.5 ⇡ 0.39 and 0.52, respectively. Due to
the limited number of black hole forming collapse simula-
tions, we fit the neutrino spectral parameters by a linear
function of ⇠2.5, separately for ⌫e, ⌫̄e, and ⌫x . These are
shown by the solid lines in Figure 5. We find the neutrino
energetics tend to decrease with compactness, which can be
understood by the fact larger compactness progenitors have
shorter durations for black hole formation; it is well approx-
imated as / ⇠�3/2 (e.g., O’Connor & Ott 2011). Although

the shorter duration is partially compensated by higher lu-
minosities, the duration dominates the overall e↵ect. The
neutrino mean energies show a flat (for ⌫e and ⌫̄e) or rise
(for ⌫x) with compactness. The rise in ⌫x mean energy is
the hallmark signature of black hole formation: the rapid
mass accretion increases the protoneutron star density and
temperature, which is reflected in ⌫x ; the other flavors by
comparison have larger neutrinosphere radii and are less af-
fected. For example, the ⌫e, ⌫̄e, and ⌫x neutrinosphere radii
are 60, 58, and 30 km for the neutrino energy of 34 MeV at
400 msec after bounce in the case of 35M�. The protoneu-
tron star radii shrinks to ⇠30 km (⇢ > 10

10 g/cm3) by this
time. The shape parameter shows a weak tendency to in-
crease with compactness, which can be understood by the
decrease of duration time with compactness. This is because
the shape parameter has initially high values and a plateau
of low values in the late phase, so shorter duration time re-
sults in larger values of the time-integrated shape parameter.

3.2 IMF-weighted average neutrino spectrum

The average neutrino spectrum per core collapse, dN/dE,
can be derived by evaluating the contribution of a given pro-
genitor by the initial mass function (IMF). Since the IMF
falls steeply with progenitor mass, contributions from lower
mass progenitors become important. We use the ZAMS mass
bins used in WHW02, which runs from 10.8M� to 75M�.
Progenitors with initial masses below this range evolve and
collapse as ONeMg cores (Jones et al. 2013), and is an
important population of the DSNB (e.g., Mathews et al.
2014). We include this population based on the long-term
core-collapse simulation of Hudepohl et al. (2010) who used
the 8.8M� progenitor of Nomoto (1984, 1987). The time-
integrated neutrino spectral parameters (not shown in Fig-
ure 3) are (E tot

⌫ , hE⌫i, h↵i) = (2.07, 8.05, 2.53), (2.08, 9.13, 1.89),
and (2.32, 9.83, 1.43) for ⌫e, ⌫̄e, and ⌫x , respectively, in the
same units are shown in Figure 3. For progenitors above
75M� we extend the 75M� mass bin to 100M�.

The average neutrino spectrum is then obtained as,

dN
dE
=
’
i

Ø
�Mi

 (M)dMØ
100

8
 (M)dM

fi(E) , (13)

where �Mi is the mass range of mass bin i,  (M) = dn/dM
is the IMF, and fi(E) is the spectrum as defined in Eq. (12)
with neutrino spectral parameters (E tot

⌫ , hE⌫i, h↵i) for the
core collapse of a progenitor of mass Mi . Since we charac-
terize the spectral parameters in compactness, yet the abun-
dance of progenitors is determined by its ZAMS mass, we re-
quire knowledge of the distribution of compactness in mass,
⇠(M). We adopt the distribution from the pre-supernova
models of WHW02, but explore other possibilities later.
Finally, we adopt a Salpeter IMF with  (M) / M⌘ with
⌘ = �2.35 in the mass range 8–100M�, but explore a liberal
range from �2.15 to �2.45 (Bastian et al. 2010) in our final
calculations.

The resulting average DSNB flux is shown by the solid
curves in Figure 6, for the ⌫̄e (top panel) and ⌫x (bottom
panel). The average ⌫̄e spectrum can be well modeled by the
pinched Fermi-Dirac spectral function with total energetics
4.3⇥ 10

52 erg, mean energy 14.6 MeV, and shape parameter
3.3. The ⌫x depends on the assumed shape parameter. In
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to large compactness, points represent the solar metal 40M�
of WHW02, solar metal 25M� of WHW02, zero metal 33M�
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of WW95, solar metal 40M� of WW95 updated in Heger et
al. (2001), and low metal 30M� of Nakazato et al. (2013). Spec-
tral shape parameter are shown only when relevant information
was available. Straight lines are linear fits through the spectral
parameters.

tion 2.3, the shape parameter is particularly sensitive to the
details of included microphysics.

We next repeat the exercise for collapse to black holes,
shown as solid symbols in Figure 5. For these, the time in-
tegral is performed until the moment of black hole forma-
tion. For consistency, we collect simulations from the liter-
ature that adopt a LS EOS with K = 220 MeV. Hempel
et al. (2012) simulated the collapse of the solar metallic-
ity 40M� star of WW95 updated in Heger et al. (2001),
whose ⇠2.5 ⇡ 0.59. Nakazato et al. (2013) followed black hole
formation in their low metal 30M� progenitor, whose com-
pactness is ⇠2.5 ⇡ 0.74 (private communication). Hudepohl
(2014) simulated the collapse of the solar metal 25M� and
40M� progenitors of WHW02, with compactness ⇠2.5 ⇡ 0.31

and ⇠2.5 ⇡ 026, respectively.
To this list we add simulations of the solar metallicity

40M� star of WW95 with ⇠2.5 ⇡ 0.55 (note the di↵erent
compactness from the version updated in Heger et al. 2001),
as well as the 33M� and 35M� zero-metallicity progenitors
of WHW02 with ⇠2.5 ⇡ 0.39 and 0.52, respectively. Due to
the limited number of black hole forming collapse simula-
tions, we fit the neutrino spectral parameters by a linear
function of ⇠2.5, separately for ⌫e, ⌫̄e, and ⌫x . These are
shown by the solid lines in Figure 5. We find the neutrino
energetics tend to decrease with compactness, which can be
understood by the fact larger compactness progenitors have
shorter durations for black hole formation; it is well approx-
imated as / ⇠�3/2 (e.g., O’Connor & Ott 2011). Although

the shorter duration is partially compensated by higher lu-
minosities, the duration dominates the overall e↵ect. The
neutrino mean energies show a flat (for ⌫e and ⌫̄e) or rise
(for ⌫x) with compactness. The rise in ⌫x mean energy is
the hallmark signature of black hole formation: the rapid
mass accretion increases the protoneutron star density and
temperature, which is reflected in ⌫x ; the other flavors by
comparison have larger neutrinosphere radii and are less af-
fected. For example, the ⌫e, ⌫̄e, and ⌫x neutrinosphere radii
are 60, 58, and 30 km for the neutrino energy of 34 MeV at
400 msec after bounce in the case of 35M�. The protoneu-
tron star radii shrinks to ⇠30 km (⇢ > 10

10 g/cm3) by this
time. The shape parameter shows a weak tendency to in-
crease with compactness, which can be understood by the
decrease of duration time with compactness. This is because
the shape parameter has initially high values and a plateau
of low values in the late phase, so shorter duration time re-
sults in larger values of the time-integrated shape parameter.

3.2 IMF-weighted average neutrino spectrum

The average neutrino spectrum per core collapse, dN/dE,
can be derived by evaluating the contribution of a given pro-
genitor by the initial mass function (IMF). Since the IMF
falls steeply with progenitor mass, contributions from lower
mass progenitors become important. We use the ZAMS mass
bins used in WHW02, which runs from 10.8M� to 75M�.
Progenitors with initial masses below this range evolve and
collapse as ONeMg cores (Jones et al. 2013), and is an
important population of the DSNB (e.g., Mathews et al.
2014). We include this population based on the long-term
core-collapse simulation of Hudepohl et al. (2010) who used
the 8.8M� progenitor of Nomoto (1984, 1987). The time-
integrated neutrino spectral parameters (not shown in Fig-
ure 3) are (E tot

⌫ , hE⌫i, h↵i) = (2.07, 8.05, 2.53), (2.08, 9.13, 1.89),
and (2.32, 9.83, 1.43) for ⌫e, ⌫̄e, and ⌫x , respectively, in the
same units are shown in Figure 3. For progenitors above
75M� we extend the 75M� mass bin to 100M�.

The average neutrino spectrum is then obtained as,
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where �Mi is the mass range of mass bin i,  (M) = dn/dM
is the IMF, and fi(E) is the spectrum as defined in Eq. (12)
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⌫ , hE⌫i, h↵i) for the
core collapse of a progenitor of mass Mi . Since we charac-
terize the spectral parameters in compactness, yet the abun-
dance of progenitors is determined by its ZAMS mass, we re-
quire knowledge of the distribution of compactness in mass,
⇠(M). We adopt the distribution from the pre-supernova
models of WHW02, but explore other possibilities later.
Finally, we adopt a Salpeter IMF with  (M) / M⌘ with
⌘ = �2.35 in the mass range 8–100M�, but explore a liberal
range from �2.15 to �2.45 (Bastian et al. 2010) in our final
calculations.

The resulting average DSNB flux is shown by the solid
curves in Figure 6, for the ⌫̄e (top panel) and ⌫x (bottom
panel). The average ⌫̄e spectrum can be well modeled by the
pinched Fermi-Dirac spectral function with total energetics
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Figure 3. Neutrino emission parameters for 2D simulations: to-
tal energetics (upper panel), mean energy (middle panel), and
shape parameter (lower panel) shown for ⌫e (red circles), ⌫̄e (blue
squares), and ⌫x (black diamonds). Each point is a core-collapse
simulation, plotted at the value of the progenitor compactness
⇠2.5.

(2016). Since the high energy component of the neutrino
distribution is essential to determine the shape parameter,
the inclusion of improved neutrino reactions such as inelas-
tic scatterings on nucleons and nuclei, which contribute to
down-scattering of high energy neutrinos, is important for
the detailed prediction of the neutrino spectra.

3 DSNB PREDICTION AND DETECTION

3.1 Characterizing the neutrino emission

For each 2D core-collapse simulation, we estimate the to-
tal energy liberated in the form of neutrinos and the flux-
weighted mean neutrino energy as,

E tot
⌫ =

π
L⌫(t)dt , (10)

hE⌫i =

Ø
E⌫(t) €N⌫(t)dtØ €N⌫(t)dt

, (11)

where €N⌫ = L⌫/E⌫ . The time integrals are performed until
100 sec post bounce. We obtain the spectral shape parameter
h↵i by fitting the time-summed neutrino spectrum to the
pinched Fermi-Dirac functional form (Keil et al. 2003),

f (E) = (1 + h↵i)(1+h↵i)
�(1 + h↵i)

E tot
⌫ E h↵i

hE⌫i2+h↵i
exp


�(1 + h↵i) E

hE⌫i

�
, (12)

where hE⌫i is fixed to the flux-weighted average neutrino
energy, Eq. (11). This yields a better spectral fit than us-
ing a flux-weighted shape parameter analogous to the mean
energy of Eq. (11).

Figure 3 shows the spectral parameters (E tot, hE⌫i, h↵i)
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Figure 4. The same as Figure 3 but showing in bold filled sym-
bols the time-integrated spectral parameters for the simulations
of Summa et al. (2016).

separately for ⌫e, ⌫̄e, and ⌫x , plotted as functions of the com-
pactness ⇠2.5 of the progenitor. The total neutrino energet-
ics show a clear increase with the progenitor compactness,
consistent with previous studies: high compactness leads to
higher mass accretion rate, which leads to larger gravita-
tional energy liberation and hence higher neutrino energet-
ics (Nakamura et al. 2015). We also see a clear hierarchy in
the total energetics in neutrino flavor, ⌫x < ⌫̄e < ⌫e. The ⌫e
is largest due to the additional contribution from the delep-
tonization of the progenitor core. For mean energy, a mild
increase with compactness is evident. We also see the usual
hierarchy with ⌫e being the lowest and ⌫x being the high-
est. The shape parameter h↵i shows little variation between
di↵erent compactness or flavor, consistently falling between
3 to 4. As noted in section 2.2, we do not determine h↵i
for ⌫x due to limitations in our simulation setup. However,
as discussed in section 2.3, we expect it to be smaller than
the values for ⌫e or ⌫̄e, and we will explore values between
1.0–4.0 in this paper.

In Figure 4 we plot on the same data the time-integrated
spectral parameters for the 18 2D core-collapse simulations
of Summa et al. (2016). The same qualitative trends are
observed. For example, the hierarchy in the mean energy
and alpha with neutrino species is observed. Most impor-
tantly, the same trends with compactness are observed: rise
in the total neutrino energetics, mild increase in neutrino
average energies, and weak dependence for the shape pa-
rameter. The flavor hierarchy of the total energetics is more
modest in the Summa et al. (2016) models by construction:
since the Summa et al. (2016) simulations terminate earlier
and we assume the gravitational binding energy liberated
in the late-phase is equipartitioned in neutrino species. One
notable di↵erence is seen in the systematically lower shape
parameters. This is not surprising since as discussed in Sec-
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Figure 3. Neutrino emission parameters for 2D simulations: to-
tal energetics (upper panel), mean energy (middle panel), and
shape parameter (lower panel) shown for ⌫e (red circles), ⌫̄e (blue
squares), and ⌫x (black diamonds). Each point is a core-collapse
simulation, plotted at the value of the progenitor compactness
⇠2.5.

(2016). Since the high energy component of the neutrino
distribution is essential to determine the shape parameter,
the inclusion of improved neutrino reactions such as inelas-
tic scatterings on nucleons and nuclei, which contribute to
down-scattering of high energy neutrinos, is important for
the detailed prediction of the neutrino spectra.

3 DSNB PREDICTION AND DETECTION

3.1 Characterizing the neutrino emission

For each 2D core-collapse simulation, we estimate the to-
tal energy liberated in the form of neutrinos and the flux-
weighted mean neutrino energy as,

E tot
⌫ =

π
L⌫(t)dt , (10)

hE⌫i =

Ø
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, (11)

where €N⌫ = L⌫/E⌫ . The time integrals are performed until
100 sec post bounce. We obtain the spectral shape parameter
h↵i by fitting the time-summed neutrino spectrum to the
pinched Fermi-Dirac functional form (Keil et al. 2003),

f (E) = (1 + h↵i)(1+h↵i)
�(1 + h↵i)

E tot
⌫ E h↵i

hE⌫i2+h↵i
exp


�(1 + h↵i) E

hE⌫i

�
, (12)

where hE⌫i is fixed to the flux-weighted average neutrino
energy, Eq. (11). This yields a better spectral fit than us-
ing a flux-weighted shape parameter analogous to the mean
energy of Eq. (11).

Figure 3 shows the spectral parameters (E tot, hE⌫i, h↵i)

0

5

10

15

E ν
to

t  [1
052

 e
rg

] νe
anti-νeνx

14

16

18

<E
ν>

 [M
eV

]

0 0.1 0.2 0.3 0.4 0.5
Compactness (ξ

2.5
)

2
3
4
5

<α
>

2D

Figure 4. The same as Figure 3 but showing in bold filled sym-
bols the time-integrated spectral parameters for the simulations
of Summa et al. (2016).

separately for ⌫e, ⌫̄e, and ⌫x , plotted as functions of the com-
pactness ⇠2.5 of the progenitor. The total neutrino energet-
ics show a clear increase with the progenitor compactness,
consistent with previous studies: high compactness leads to
higher mass accretion rate, which leads to larger gravita-
tional energy liberation and hence higher neutrino energet-
ics (Nakamura et al. 2015). We also see a clear hierarchy in
the total energetics in neutrino flavor, ⌫x < ⌫̄e < ⌫e. The ⌫e
is largest due to the additional contribution from the delep-
tonization of the progenitor core. For mean energy, a mild
increase with compactness is evident. We also see the usual
hierarchy with ⌫e being the lowest and ⌫x being the high-
est. The shape parameter h↵i shows little variation between
di↵erent compactness or flavor, consistently falling between
3 to 4. As noted in section 2.2, we do not determine h↵i
for ⌫x due to limitations in our simulation setup. However,
as discussed in section 2.3, we expect it to be smaller than
the values for ⌫e or ⌫̄e, and we will explore values between
1.0–4.0 in this paper.

In Figure 4 we plot on the same data the time-integrated
spectral parameters for the 18 2D core-collapse simulations
of Summa et al. (2016). The same qualitative trends are
observed. For example, the hierarchy in the mean energy
and alpha with neutrino species is observed. Most impor-
tantly, the same trends with compactness are observed: rise
in the total neutrino energetics, mild increase in neutrino
average energies, and weak dependence for the shape pa-
rameter. The flavor hierarchy of the total energetics is more
modest in the Summa et al. (2016) models by construction:
since the Summa et al. (2016) simulations terminate earlier
and we assume the gravitational binding energy liberated
in the late-phase is equipartitioned in neutrino species. One
notable di↵erence is seen in the systematically lower shape
parameters. This is not surprising since as discussed in Sec-
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the lower panel, a shape parameter of 3.0 is assumed, but
we will explore values in the range 1.0–4.0 in later sections.

The contribution from collapse to black holes is intro-
duced by considering a critical compactness, ⇠2.5,crit, above
which progenitors are assumed to collapse to black holes.
While this is a simplistic picture of a complex phenomenon,
our prescription is motivated by various studies showing
that large compactness is conducive to black hole formation
(e.g., O’Connor & Ott 2011). In general, the precise value
of ⇠2.5,crit will depend on the explosion mechanism and their
implementation. For the neutrino mechanism, current im-
plementations suggest values between 0.2–0.6 (O’Connor &
Ott 2011; Ugliano et al. 2012; Horiuchi et al. 2014; Pejcha &
Thompson 2015; Ertl et al. 2016). However, ongoing e↵orts
are expected to update predictions in the future. We thus
treat ⇠2.5,crit as a parameter of interest that is predicted by
simulations and to be tested by future observational data.
For the neutrino emission of failed explosions, we adopt the
functional form Eq. (12) with neutrino spectral parameters
predicted by black hole forming simulations (Figure 5).

The predicted weighted average neutrino spectrum in-
cluding contributions from collapse to black holes are shown
as non-solid lines in Figure 6. Four values of ⇠2.5,crit = 0.1,
0.2, 0.3, and 0.43 are shown. Based on the solar metallicity
progenitors of WHW02, these critical values correspond to
failed explosion fractions (the number of failed explosions
over the total number of massive stars in the mass range
8–100M�) of 45%, 17%, 5%, and 0%, respectively. Note that
the largest compactness in the WHW02 solar metallicity
stellar suite is ⇠2.5 ⇡ 0.43. Therefore, values of ⇠2.5,crit above
0.43 means no contribution from collapse to black holes in
our calculations.

The resulting spectra are the combined e↵ect of failed
explosions having lower neutrino total energies and higher
mean energies than the 2D counterparts. The smaller the
critical compactness, the larger the contribution from failed
explosions, and thus the more prominent is the high-energy
component of the mean neutrino spectrum. Adopting a
shallower (steeper) IMF increases (decreases) the empha-
sis on the most massive stars. For example, compared to the
Salpeter IMF, a slope of �2.15 implies ⇠ 30% larger repre-
sentation of the most massive stars M > 40M�. However,
the most massive stars are rare and the increase is mod-
est in absolute terms. Even for the shallow �2.15 slope and
largest failed fraction (⇠2.5,crit = 0.1), the weighted average
neutrino spectrum is only a↵ected at the few percent level
below neutrino ⇠ 30 MeV and ⇠ 15% above ⇠ 60 MeV.

The core compactness of massive stars has recently
been carefully investigated by Sukhbold & Woosley (2014)
using one-dimensional stellar evolution codes. They show
that quantitatively, the compactness of a star depends on a
range of inputs, including not only the initial stellar mass
and metallicity, but also the way mass loss and convec-
tion is handled in the code, as well as the nuclear micro-
physics implementation. However, the authors also show
that qualitatively the compactness robustly follows a non-
monotonic distribution in ZAMS mass, with a peak around
⇠ 20M�. This is the result of the interplay of the carbon-
burning shell with the carbon-depleted core, and later,
oxygen-burning shell with the oxygen-depleted core. Nev-
ertheless, the position of the peak has an uncertainty of
some ⇠ 1M� in mass (Sukhbold &Woosley 2014). To explore
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Figure 6. Weighted average neutrino spectra of ⌫̄e (top panel)
and ⌫x (bottom panel), based on 101 2D core-collapse simulations
and a collection of simulations of collapse to black holes. The rel-
ative contributions from neutron star and black hole scenarios
are determined by the critical compactness, ⇠2.5,crit; progenitors
with compactness ⇠2.5 > ⇠2.5,crit are assumed to collapse to black
holes. For reference, the fraction of black hole collapses are 45%
(⇠2.5,crit = 0.1), 17% (⇠2.5,crit = 0.2), 5% (⇠2.5,crit = 0.3), and 0%
(⇠2.5,crit = 0.43). Above ⇠2.5,crit = 0.43, there is no black hole con-
tribution.

other currently-available suites of pre-supernova progenitor
models, we determine the average neutrino flux employing
the pre-supernova models of Woosley & Heger (2007). This
suite of progenitors in general has similar or higher com-
pactness compared to WHW02, reaching a peak compact-
ness of ⇠2.5 ⇡ 0.54 compared to 0.43 for WHW02. Also, a
second peak in compactness at ⇠ 40M� is evident, in addi-
tion to the peak around ⇠ 20M� that is seen in WHW02
and Sukhbold & Woosley (2014). These features manifest as
a harder predicted average neutrino spectra, because higher
compactness yields higher neutrino luminosities and mean
energies (Figure 3). In Section 3.4, we show how this a↵ects
the DSNB event rate prediction.

3.3 DSNB flux prediction

The DSNB is determined by integrating the cosmic history
of the comoving core-collapse rate, RCC (z), by the mean neu-
trino spectrum per core collapse, dN/dE, appropriately red-
shifted, over cosmic time (see, e.g., Beacom 2010, for a recent
review),

d�
dE
= c

π
RCC(z)

dN
dE 0 (1 + z)

���� dt
dz

���� dz , (14)

where E 0 = E(1+z) and |dz/dt | = H0(1+z)[⌦m(1+z)3+⌦⇤]1/2.
We include contributions out to a redshift of 5, which is
su�ciently large to include the majority of the DSNB flux
(Ando & Sato 2004) for ⇠ 10 MeV neutrino energy threshold.
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この予⾔を
現実的な超新星モデルを使って精緻化したい.
もちろんバーストν理論モデルとしても重要.

ü 予想される背景ニュートリノスペクトル
コンパクトネスが

⼩さい→CCSNとして爆発
⼤きい→BH形成

ではその中間は？

CCSN / BH を分ける critical ξがあると仮定.

Horiuchi+’18
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より現実的な超新星モデルに向けて (1) - ⾃転の効果

星はすべからく⾃転しているが、これまでにこの発表で触れた超新星モデルはその効果を考慮していない.

ü 超新星親星コアの⾃転

ü ⾃転が超新星のダイナミクスに及ぼすと期待される効果

ends. Furthermore, redistribution of angular momentum and
chemical species were modeled using a set of prescriptions and
assumptions for mixing and transport processes. In particular,
all torques were assumed to lead to rigid rotation on some
physical timescale (Fryer & Heger 2000). The ‘‘magnetic’’
models of Heger et al. (2003b) assume a magnetic dynamo
process that generates fields that inhibit differential rotation
and lead to slower core rotation at collapse.

In Figure 3 the profiles for selected models of the initial
angular velocity versus radius are shown. Note that the differ-
ences due to different progenitor masses are negligible com-
pared with the order-of-magnitude differences introduced by
the inclusion of magnetic field effects during stellar evolution.
One shouldbe cautious, however, in accepting these results since
research on stellar evolution with rotation is still in its infancy.

4. NUMERICAL TECHNIQUES

4.1. Equations of State

For all our calculations involving realistic progenitor models
we have made use of the EOS of Lattimer & Swesty (1991). It is
based on the finite-temperature liquid drop model of nuclei
developed in Lattimer et al. (1985). Our particular implemen-
tation is the one presented in Thompson et al. (2003) that uses a

three-dimensional table in temperature (T ), density (!), and Ye.
At each point in the table the specific internal energy, the
pressure (P), the entropy per baryon (s), and compositional
information are stored. Using integer arithmetic to find nearest
neighbor points for a given set of !, T, and Ye, the need for time-
consuming search algorithms has been eliminated. Given !, T,
and Ye, the code performs three six-point bivariant interpola-
tions in the T-! planes nearest to and bracketing the given Ye
point. A quadratic interpolation is then executed between Ye
points to obtain the desired thermodynamic quantity. Since our
hydrodynamic routine updates specific internal energy, we
employ a Newton-Raphson/bisection scheme that iterates on
temperature at a fixed internal energy until the root is found to
within a part in 108.

The Lattimer-Swesty EOS extends down to only !5"
106 g cm#3, and its validity in this density regime is guaran-
teed only for fairly high temperatures, where the assumption
of nuclear statistical equilibrium (NSE) still holds. For cal-
culations involving lower densities, Thompson et al. (2003)
have coupled the Lattimer-Swesty EOS to the Helmholtz EOS
(Timmes & Arnett 1999; Timmes & Swesty 2000), which
contains electrons and positrons at arbitrary degeneracy and
relativity; photons, nuclei, and nucleons as nonrelativistic ideal
gases; and Coulomb corrections.

Fig. 3.—Initial angular velocity profiles of the rotating 15 (blue) and 20 (green) M$ progenitor models (see Table 1 for model parameters). The dotted red profiles
were generated with the rotation law of eq. (5) using the central ! of model e15 for !0. All realistic presupernova models exhibit near rigid rotation inside
’1000 km. Note the much smaller angular velocities exhibited by models m15b4 and m20b4, which were evolved with the inclusion of magnetic fields.
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~3-4 rad/s

~0.3 rad/s

magnetic braking

↑
1000km

回転星の進化計算に基づく⾓速度分布
⾃転を考慮した星進化計算.

Zwerger & Müller ’97; Woosley & Weaver ’95; Heger+’00,’03.

中⼼の鉄コアはほぼ剛体回転.

磁場を介した⾓運動量輸送で⼤幅に減速.

1. 衝撃波に降着してくる物質を遠⼼⼒で⽀える.
→ 降着率が減少, 衝撃波の膨張を助ける.

2. 収縮するコアを遠⼼⼒で⽀える.
→ 重⼒エネルギーの解放を阻害, ニュートリノ加熱減少.
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ABSTRACT
We present rotating core-collapse supernova (CCSN) simulations for 11.2 and 15.0 M! progenitor

stars.
WHY: the reason why we do this study.

How: the way how we do this study.
What: Results
What: Conclusions, implications

Subject headings:

1. INTRODUCTION

[Background and motivations]

[Important ingredients for CCSN simulations
and previous works]
[Our strategy]
[Outline of this paper. S1.., S2.., ..]

Time is of post-bounce throughout this paper, unless
there is explicit notation.

2. METHOD

[Progenitor models] We employ three progenitors
with zero-age main-sequence (ZAMS) masses of 11.2,
17.0, and 27.0 solar masses from ?. Figure 1 presents
density and composition distributions of these progen-
itor models. All of the progenitors presented success-
ful shock revival in our previous work (?). The shocks
reached the outer boundary at 5,000 km within XXX s
after bounce and the simulations terminated. In this pa-
per, we show the shock evolutions for much more longer
time. According to ?, supernova properties such as neu-
trino luminosities and growth rates of explosion energy
are well characterized by compactness parameter (?) at
least in early phases. In this sense, the three progenitors
are taken from low, middle, and high compactness groups
so that they are expected to evolve in very different ways.
The progenitor properties including the compactness pa-
rameter are listed in Table ??.

[Hydro. code, grid, resolution]
The numerical code we employ is the same as the one
used in ? except some minor revisions. The spatial
range considered in ? was limited to 5,000 km from the
center, which made it difficult to deduce the final figure
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of SN. In this study, we extend it to 100,000 km. The
outer boundaries of all examined progenitors are located
in HeC layers. It is sufficiently large to prevent the SN
shock from being affected by the boundary conditions
and leaving the computational domain during the sim-
ulated time. 10s, explosive synthesis stopped, neutrino
lumi decayed, so that we expect to find convergence of
explosion energy and nickel yield. The models are com-
puted on a spherical coordinate grid with a resolution of
nr ×nθ = 1008×128 zones. Our spatial grid has a finest
mesh spacing drmin = 250 m at the center and dr/r is
better than 1.0 % at r > 100 km. Seed perurbations
for aspherical instabilities are imposed by hand by intro-
ducing random perturbations of 0.1% in density on the
whole computational grid except the very central region.

[Neutrino transport/interactions, EOS]
For (anti-)electron neutrinos, we use the isotropic diffu-
sion source approximation (IDSA, ?). For heavy lepton
neutrinos leakage scheme is applied, taking 20 energy
bins with an upper bound of 300 MeV. The neutrino
rates include (check) emission and absorption by free
nucleons, elastic scattering by nuclei and free nucleons,
as well as pair production and annihilation. In high-
density regime, we use the Equation of State (EOS) of
? with a nuclear incompressibility of K = 220 MeV. At
low densities, we employ an EOS accounting for photons,
electrons, positrons, and ideal gas contribution from sil-
icon (check). During our long-term SN simulations, we
follow the explosive nucleosynthesis by solving a simple
nuclear network consisting of 13 alpha-nuclei, 4He, 12C,
16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe,
and 56Ni. A feedback from the composition change to
the EOS is neglected, whereas the energy feedback from
the nuclear reactions to the hydrodynamic evolution is
taken into account as in ?.

[Rotatoin]
We assume a rotation profile as

Ω = Ω0
1

1 + (x/1000km)2
1

1 + (z/1000km)4
(1)

The initial angular velocity at the origin, Ω0, is treated
as a free parameter and we vary is as Ω0 = 0, 0.2, ..., 2.0
rad s−1.

• Progenitor model
– SN 1987A モデル (Urushibata+’18)

• 2D simulations with 3DnSNe code
– n(r)*n(θ) = 600*128, r = 0-10,000 km, θ = 0-π

• Neutrino transport
– 3-flavor IDSA spectral transport (Liebendoerfer+09)
‒ with 20 energy bins (< 300 MeV) 

ends. Furthermore, redistribution of angular momentum and
chemical species were modeled using a set of prescriptions and
assumptions for mixing and transport processes. In particular,
all torques were assumed to lead to rigid rotation on some
physical timescale (Fryer & Heger 2000). The ‘‘magnetic’’
models of Heger et al. (2003b) assume a magnetic dynamo
process that generates fields that inhibit differential rotation
and lead to slower core rotation at collapse.

In Figure 3 the profiles for selected models of the initial
angular velocity versus radius are shown. Note that the differ-
ences due to different progenitor masses are negligible com-
pared with the order-of-magnitude differences introduced by
the inclusion of magnetic field effects during stellar evolution.
One shouldbe cautious, however, in accepting these results since
research on stellar evolution with rotation is still in its infancy.

4. NUMERICAL TECHNIQUES

4.1. Equations of State

For all our calculations involving realistic progenitor models
we have made use of the EOS of Lattimer & Swesty (1991). It is
based on the finite-temperature liquid drop model of nuclei
developed in Lattimer et al. (1985). Our particular implemen-
tation is the one presented in Thompson et al. (2003) that uses a

three-dimensional table in temperature (T ), density (!), and Ye.
At each point in the table the specific internal energy, the
pressure (P), the entropy per baryon (s), and compositional
information are stored. Using integer arithmetic to find nearest
neighbor points for a given set of !, T, and Ye, the need for time-
consuming search algorithms has been eliminated. Given !, T,
and Ye, the code performs three six-point bivariant interpola-
tions in the T-! planes nearest to and bracketing the given Ye
point. A quadratic interpolation is then executed between Ye
points to obtain the desired thermodynamic quantity. Since our
hydrodynamic routine updates specific internal energy, we
employ a Newton-Raphson/bisection scheme that iterates on
temperature at a fixed internal energy until the root is found to
within a part in 108.

The Lattimer-Swesty EOS extends down to only !5"
106 g cm#3, and its validity in this density regime is guaran-
teed only for fairly high temperatures, where the assumption
of nuclear statistical equilibrium (NSE) still holds. For cal-
culations involving lower densities, Thompson et al. (2003)
have coupled the Lattimer-Swesty EOS to the Helmholtz EOS
(Timmes & Arnett 1999; Timmes & Swesty 2000), which
contains electrons and positrons at arbitrary degeneracy and
relativity; photons, nuclei, and nucleons as nonrelativistic ideal
gases; and Coulomb corrections.

Fig. 3.—Initial angular velocity profiles of the rotating 15 (blue) and 20 (green) M$ progenitor models (see Table 1 for model parameters). The dotted red profiles
were generated with the rotation law of eq. (5) using the central ! of model e15 for !0. All realistic presupernova models exhibit near rigid rotation inside
’1000 km. Note the much smaller angular velocities exhibited by models m15b4 and m20b4, which were evolved with the inclusion of magnetic fields.
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回転星の進化計算に基づく⾓速度分布

• Effective GR potential
• State-of-the-art neutrino opacity (Kotake+’18)
• LS220 EoS (Lattimer & Swesty ’91) + Boltzmann gas
• 13α (He-Ni) nuclear reactions
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ニュートリノ光度

ü ⾃転を考慮した空間２次元計算の結果
以下の２つの効果を確認した. 

1. 衝撃波に降着してくる物質を遠⼼⼒で⽀える.
→ 降着率が減少, 衝撃波の膨張を助ける.

2. 収縮するコアを遠⼼⼒で⽀える.
→ 重⼒エネルギーの解放を阻害, ニュートリノ加熱減少.

初期(0-150 ms) の平均衝撃波半径
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爆発エネルギー

⾃転を考慮した空間２次元計算の結果、ニュートリノの
光度は10-20%、平均エネルギーは5-10%、それぞれ無回
転の場合に⽐べて減少した.

超新星ニュートリノ（単発）：<~30-40%
背景ニュートリノ（積み重ね）：<~10%

（※ Ib/c型超新星の割合~30%）

ü ⾃転を考慮した空間２次元計算の結果

ü 観測イベント数への影響

爆発に有利な効果（衝撃波の膨張）と不利な効果（ニュートリノ
加熱の減少）の両⽅が同時に働く.

結果、回転が遅いモデルは爆発エネルギーが増加し、速いモデル
は減少した.



より現実的な超新星モデルに向けて (2) - 親星が持つ⾮球対称構造の効果

超新星親星の構造は対流などによって球対称からずれているが、これまでにこの発表で触れた計算で
使⽤されている超新星親星モデルは全て球対称の１次元モデル.

近年、特に重⼒崩壊直前の星の対流構造を空間多次元の星進化計算で明らかにする試みが盛ん.

ü 親星の⾮球対称構造が超新星のダイナミクスに及ぼすと期待される効果
乱流の種となって衝撃波背⾯での⾮等⽅運動やSASIを誘発
→ 停滞した衝撃波の復活を助ける.The Astrophysical Journal Supplement Series, 205:2 (17pp), 2013 March Nakazato et al.

Figure 18. Total neutrino energy emitted until 20 s after the bounce for the models with shock revival time trevive = 100 ms (left), 200 ms (center), and 300 ms (right).
They are computed from νRHD and PNSC simulations with interpolation (13), except for the model with initial mass Minit = 30 M! and metallicity Z = 0.004, for
which the neutrino emission up to the black hole formation followed by νRHD simulation is plotted in all panels. The line notations are the same as those in Figure 3.
(A color version of this figure is available in the online journal.)

Figure 19. Neutrino energy emitted until 20 s after the bounce for νe (left), ν̄e (center), and νx (right). They are computed from νRHD and PNSC simulations with
interpolation (13). The plots with triangles, squares, and circles denote the models with shock revival time trevive = 100 ms, 200 ms, and 300 ms, respectively.
(A color version of this figure is available in the online journal.)

Figure 3), and it is larger for the explosion models with large
trevive because the accretion phase is longer and the neutron
star mass is larger. These features are shown more explicitly
in Figure 19, where the total emission energy is plotted for
the core mass. The shock-revival-time dependence of the total
emission energy is larger for the models with higher core mass
because the mass accretion rate is higher. Since the neutrino
luminosity is approximated as Equation (8), the emission
energy during the accretion phase is roughly proportional to
the product of the mass accretion rate and shock revival time.
Moreover, the resultant proto-neutron star mass depends on this
product. Therefore, also in the late phase, the shock-revival-time
dependence is larger for the models with higher core mass. On
the other hand, the shock-revival-time dependence is larger for
νe and ν̄e than νx . This feature is also seen in the mean energy
of emitted neutrinos, as shown in Figure 20. In the accretion
phase, νe and ν̄e are emitted more abundantly than νx , therefore
the signal of νe and ν̄e is sensitive to the duration of this phase,
i.e., the shock revival time.

6. SUMMARY AND DISCUSSION

The purpose of this study is to construct a comprehensive
data set of long-term (up to ∼10 s from the onset of the
collapse) supernova neutrino signals for a variety of progenitor
stellar models with different initial masses and metallicities,
which would be useful for a wide range of research related
to supernova neutrinos. To achieve this goal, we avoided the
difficulty of long-term full numerical simulations and combined
two different schemes of numerical simulations. The early
phase of collapse-driven supernovae, at which the collapsing
core is bounced and the shock wave is stalled due to matter
accretion, has been followed by the general relativistic νRHD
code. The late phase after the shock revival has been dealt
with by the general relativistic PNSC simulation, which solves
quasi-static evolutions with neutrino diffusion. The two phases
are combined phenomenologically, taking into account the
uncertainty about the explosion mechanism, and the shock
revival time is introduced as a parameter connecting the two
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衝撃波復活の
タイミングに
よって10-50%
の違い



より現実的な超新星モデルに向けて (2) - 親星が持つ⾮球対称構造の効果

超新星親星の構造は対流などによって球対称からずれているが、これまでにこの発表で触れた計算で
使⽤されている超新星親星モデルは全て球対称の１次元モデル.

近年、特に重⼒崩壊直前の星の対流構造を空間多次元の星進化計算で明らかにする試みが盛ん.

Mueller+’16, Fig. 4

assuming a full spherical geometry. The gravitational energy con-
tribution from material on the computational grid is calculated
according to

EG !
Z

GM rð Þ dM
r

dr; ð13Þ

where the mass increment is dM ¼ 4!r 2h"i and the integral is
taken over the radial limits of the grid.
The total kinetic energy levels off in all of the models by t %

300 s. The 2D models are characterized by a much larger overall
kinetic energy. The total kinetic energy settles down to a slow in-
crease as the oxygen shell evolves; this is true for both 2D and
3D.
The radial profiles of the rms velocity fluctuations are presented

in Figure 6 for the 2D and 3D models. The velocity fluctuation
amplitudes in all of the 2D models are higher than the 3D model
by a factor of %2. The 2D models also assume a significantly
different radial profile than the 3Dmodel and a flow structure that
is dominated by large convective vortices that span the depth of
the convection zone. The signature of these large eddies is ap-
parent in the horizontal velocity components, as well as the fairly
symmetric shape of the radial velocity profile within the convec-
tion zone. The velocity components in the 3Dmodel reveal an up-
flowing and downflowing circulation with horizontal deflection
taking place in a fairly narrow layer at the convective boundaries.
Although significant differences exist between 2D and 3D

models, the 2D models are found to be in good agreement with
each other to the extent that the statistics have converged, which
are calculated over the time period t2 ½300; 450' s. The time
period for calculating statistics was limited by the model ob.2d.C,
which was only run as far as t % 450 s. The agreement among the
2D models shows that the outer boundary condition (tested by
model ob.2d.e) and the grid resolution (tested by model ob.2d.C)
are not playing a decisive role in determining the overall structure
of the flow, at least in these preliminary tests. The agreement in
overall velocity amplitude in the upper stable layer in model
ob.2d.e indicates that the stable layer velocity amplitudes are not
strongly affected by the details of themodes that are excited in that
region. This gives credence to the analysis in Meakin & Arnett
(2007), which assumes that the stable layer velocity amplitudes
are determined by the dynamical balance between the convective
ram pressure and the wave-induced fluctuations.
The convective turnover times tc ¼ 2!R/vconv for the 2Dmod-

els are all of order tc % 40 s, and they span between 10 and 55
convective turnovers. The turnover time for the 3D model is
tc % 100 s, and the model spans approximately eight convective
turnovers.

Fig. 4.—Time evolution of the 3D oxygen shell burning model. Top: Mag-
nitude of the oxygen abundance gradient is shown and illustrates the migration of
the convective boundaries into the surrounding stable layers. Interfacial oscil-
lations are also apparent in the upper convective boundary layer (r % 0:85 ; 109

cm), and internal wavemotions can be seen quite clearly in the upper stable layer.
Bottom: Kinetic energy density is shown and illustrates the intermittent nature of
the convective motions. The upwelling chimney-like features in the convective
region are seen to excite internal wave trains in the stable layers, which propagate
away from the boundaries of the convection zones. See also Fig. 25.

Fig. 3.—Time sequence showing the onset of convection in the oxygen shell burning model. The first 200 s of the 2D model (ob.2d.c) is shown, including the initial
transient and the settling down to a new quasiYsteady state. The light yellow line indicates the location of the convective boundary as defined in the 1D TYCHO stellar
evolution model (Ledoux criterion), which was used as initial conditions for the simulation.

MEAKIN & ARNETT454 Vol. 667

Meakin & Arnett ’07, Fig. 4

ü 空間３次元の星進化計算の例
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leakage scheme of O’Connor & Ott (2010), whose 3D version
was also employed in Ott et al. (2012, 2013). The neutrino
leakage scheme includes a multiplicative factor, fheat, in the
neutrino heating source term, which can be adjusted to yield
more efficient neutrino heating (i.e., fheat > 1). The leakage
scheme with fheat = 1.00 is tuned to match the multiangle,
multigroup full neutrino transport simulations of Ott et al.
(2008). In all simulations reported here, we use 3D Cartesian
geometry with a finest grid spacing dxmin = 0.49 km. Using
adaptive mesh refinement, we achieve a pseudo-logarithmic grid
by decrementing the maximum allowed refinement level as a
function of radius. The typical effective “angular” resolution is
0.◦37.

We use a single progenitor model, the 15 M" star of Woosley
& Heger (2007). In order to study the dependence of 3D CCSN
simulations on asphericities extant in the progenitor, we apply
perturbations to the 1D stellar profile. We seed perturbations that
are convolutions of sinusoidal functions of radius and angle.
For simplicity, we perturb only the velocity in the spherical
θ -direction and leave all other variables untouched. The form of
the sinusoidal perturbation to vθ is

δvθ = MpertcS sin[(n − 1)θ ] sin[(n − 1)ζ ] cos(nφ) , (1)

where Mpert is the peak Mach number of the perturbations, cS is
the local adiabatic sound speed, n is the number of nodes in the
interval θ = [0,π ], and ζ = π (r−rpert,min)/(rpert,max −rpert,min).
The perturbations are only applied within a spherical shell
with radial limits rpert,min < r < rpert,max. We scale the
perturbations with local sound speed so that the peak amplitudes
of the perturbations are constant in Mach number, not absolute
velocity. This results in higher-speed perturbations at smaller
radii where the sound speeds are larger. Importantly, for odd
node numbers, Equation (1) results in zero net momentum
contribution to the initial conditions. We have verified this
experimentally to machine-precision.

3. RESULTS

We start our 3D simulations from the results of 1D simulations
at 2 ms after core bounce, and it is at this point that we apply the
perturbations given by Equation (1). In the results we discuss
here, we use a node count n = 5 and peak perturbation Mach
number Mpert = 0.2. This establishes large-scale perturbations
that are similar in extent and speed to some convective plumes
found in multi-D progenitor burning simulations (Meakin &
Arnett 2007; Arnett & Meakin 2011). We choose rpert,min to
correspond to the inner edge of the silicon shell (i.e., the outer
edge of the iron core). For this progenitor at the time of core
bounce, this corresponds to a radius of ∼1000 km. We set
rpert,max = 5000 km, which is sufficiently large to never reach
the shock during the simulated time period. Figure 1 shows a
pseudo-color plot of the perturbations used in this study.

We present the results of four 3D simulations, two perturbed
and two unperturbed. We use two different heat factors for
both perturbed and unperturbed case: fheat = 1.00 and a
slightly enhanced heating case with fheat = 1.02. We refer
to the simulations using the scheme n[node count]m[initial
perturbation Mach number, times ten] fheat [heat factor], such
that the perturbed model with enhanced heat factor is referred
to as “n5m2 fheat 1.02.”

We find that introducing plausibly scaled velocity perturba-
tions in the Si shell of the progenitor star can trigger a successful
explosion for cases in which an unperturbed simulation fails.

Figure 1. Example of the initial θ -velocity perturbations applied in this study.
Shown is the a meridional slice of the Mach number of the θ -direction velocity.
The arrows in the outer ring of perturbations show the local velocity directions.
(A color version of this figure is available in the online journal.)

Figure 2 shows several entropy volume renderings for models
n0m0 fheat 1.02 and n5m2 fheat 1.02 at three postbounce times.
The only difference between these two models is the presence
of initial velocity perturbations in the Si/O layer. Model n5m2
fheat 1.02 results in continued runaway shock expansion and
asymmetric explosion, as clearly shown, while model n0m0
fheat 1.02 fails to explode and the shock recedes to small radii.
At 100 ms, only shortly after the perturbations have reached the
shock, both simulations are quite similar showing strong con-
vection following the preceding period of shock expansion. By
200 ms, however, differences in the models are obvious. The
shock has already begun to recede in n0m0 fheat 1.02 while
model n5m2 fheat 1.02 has retained a large shock radius and is
on the verge of runaway shock expansion. The last frames show
the final states of the two simulations. Model n5m2 fheat 1.02
has exploded, resulting in a large, asymmetric shock structure,
while the shock has fallen back to ∼100 km in model n0m0
fheat 1.02.

In Figure 3, we present the time evolutions of several global
metrics for our four 3D simulations. The top panel of Figure 3
shows the average shock radius. All models, with the exception
of n5m2 fheat 1.02, fail to explode. Compared with the control
case, n0m0 fheat 1.00, both n0m0 fheat 1.02 and n5m2 fheat 1.00
show longer stalled-shock phases prior to shock recession. These
two intermediate cases, despite employing different heat factors,
show remarkably similar average shock radius histories. In the
case of the successful explosion, n5m2 fheat 1.02, the average
shock radius remains extremely similar to the comparable
unperturbed model, n0m0 fheat 1.02, until about 100 ms after
bounce. The average shock radius of n5m2 fheat 1.02 remains
relatively constant just below 200 km until tpb ∼ 200 ms at
which point the shock begins to expand rapidly, signaling the
onset of explosion.

The second panel of Figure 3 shows a measure of the
overall shock asymmetry, the normalized standard deviation
of the shock radius σ̃ . The shock asymmetry grows as n5m2
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Figure 2. Volume renderings of entropy for models n0m0 fheat 1.02 (left column)
and n5m2 fheat 1.02 (right column) at three different postbounce times, from
top to bottom: 100 ms, 200 ms, and 300 ms. The spatial scale is noted at the
bottom of each pane and increases with time. The PNS is visible in the center
of the renderings, marked by a magenta constant-density contour with value
1012 g cm−3.
(A color version of this figure is available in the online journal.)

fheat 1.02 experiences runaway shock expansion, indicating that
the explosion is aspherical, as is also clear from the bottom-right
panel of Figure 2. The failed explosions show comparatively
small values of σ̃ , implying relative sphericity of the shock
surface, until strong SASI oscillations set in after the shock has
receded (see Couch & O’Connor 2013).

The presence of pre-shock perturbations has substantial im-
pact on the neutrino heating efficiency, η = Qnet(Lνe

+ Lν̄e
)−1.

As shown in the third panel of Figure 3, for n5m2 fheat 1.00,
the heating efficiency history is very similar to that of n0m0
fheat 1.02. This implies that the perturbations drive nonra-
dial motion that increases the dwell time of material in the
gain region, significantly enhancing the fraction of neutrino
luminosity absorbed. For n5m2 fheat 1.02, the combination of
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Figure 3. Time evolution of the global explosion diagnostics for our simulations.
Four 3D simulations are shown: unperturbed models with fheat 1.00 (black
lines) and 1.02 (blue lines), and perturbed models with fheat 1.00 (green
lines) and 1.02 (red lines). The top panel shows the average shock radius.
The second panel shows the normalized standard deviation of the shock radius,
σ̃ = 〈rshock〉−1[(4π )−1

∫
dΩ(rshock − 〈rshock〉)2]1/2. The third panel shows the

heating efficiency, η = Qnet(Lνe + Lν̄e )−1. The bottom panel shows the ratio of
advection-to-heating time scales.
(A color version of this figure is available in the online journal.)

fheat > 1 and pre-shock perturbations results in a sufficiently in-
creased heating efficiency to initiate a neutrino-driven explosion.
Also, η depends sensitively, and nonlinearly, on fheat. The time-
averaged heating efficiencies for simulations n0m0 fheat 1.00,
n0m0 fheat 1.02, n5m2 fheat 1.00, and n5m2 fheat 1.02 are 0.062,
0.080, 0.075, and 0.100, respectively.

It is almost exactly at the positive inflection in the average
shock radius curve of n5m2 fheat 1.02 (∼200 ms) that the critical
condition for explosion, τadv/τheat > 1 is satisfied (Figure 3;
Thompson 2000; Janka 2001; Buras et al. 2006; Fernández
2012). Here we define the average advection time through the
gain region as τadv = Mgain/Ṁ and the gain region heating time
as τheat = |Egain|/Qnet, where |Egain| is the total specific energy
of the gain region and Qnet is the net neutrino heating in the
gain region (cf. Müller et al. 2012; Ott et al. 2013). During
the stalled-shock phase of n5m2 fheat 1.02, around 100–200 ms,
the ratio τadv/τheat is growing continuously. Once this critical
ratio exceeds unity, thermal energy builds up in the gain region
faster than it can be advected out into the cooling layer and the
shock begins to expand.

In order to assess the magnitude of the perturbations as they
are actually impinging upon the shock, and their effect on the
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15太陽質量の球対称な親星モデル（Woosley & Heger ʼ07)を使⽤.
半径1000-5000kmの領域にvθ摂動をパラメトリックに与えて計算.

摂動なしモデルでは衝撃波が復活し
ないセットアップに対して上記摂動
を加えると、衝撃波が復活すること
を発⾒.

注）ニュートリノ輸送を正しく取り
扱っておらず（leakage scheme）、
また計算時間も短いためにν放出量に
ついては⾔及していない.

より現実的な超新星モデルに向けて (2) - 親星が持つ⾮球対称構造の効果
ü 空間３次元の超新星爆発計算の例



ongoing core-collapse phase, emitting neutrinos via the pair-
neutrino process.

KamLAND is a one-kiloton size liquid-scintillation-type
neutrino detector (see, e.g., Gando et al. 2013). We take the

neutrino oscillation into account in a simple manner: the
survival probability of Oē is set to be 0.675 and 0.024 in the
normal and inverted mass ordering, respectively (Yoshida et al.
2016). The live-time-to-runtime ratio and the total detection

Figure 7. The time variation of the 28Si mass fraction distribution of model 25M at t=0 s (top left), 10 s (top right), 30 s (middle left), 75 s (middle right), 90 s
(bottom left), and 105 s (bottom right). An animated version of this figure is available, showing the time variation from t=0 to 105 s. The animation duration is 13 s.

(An animation of this figure is available.)
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Yoshida+’19

9-40太陽質量の空間１次元進化をHOSHIコードを⽤いて計算.
→ 重⼒崩壊の約100秒前から3DnSEVコードを⽤いて３次元計算.

（我々が重⼒崩壊計算に使⽤している3DnSNeコードの派⽣版）

右上図：25太陽質量モデルの⾓度平均したマッハ数分布.
右下図：同モデルのSi質量⽐の空間分布.

激しい殻燃焼で駆動されたSi-richな上昇流が⽴ち上がり、⼤規模な
対流構造を形成してる。

右下図を初期条件とした超新星数値シミュレーションを実⾏予定.
今回は対応する摂動なし親星の空間３次元計算結果を報告する.

より現実的な超新星モデルに向けて (2) - 親星が持つ⾮球対称構造の効果
ü 使⽤する空間３次元の親星モデル

Yoshida+’19

ü 使⽤する計算セットアップ
⾃転計算と同様.
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より現実的な超新星モデルに向けて (2) - 親星が持つ⾮球対称構造の効果

３次元計算では衝撃波が復活しないことを
期待（危惧）していたが、３次元モデルも
衝撃波復活. ２次元モデルより少し遅れる.

衝撃波の揺れ幅は⼩さい。SASIの特徴なし.

Yoshida+’19 の構造に基づく3D計算を実⾏中.

ü 空間３次元摂動なし計算結果



まとめと今後の展望

ü 空間２次元のセルフコンシステントな重⼒崩壊計算結果（KN+ʼ15）に基づいて、超新星背景
ニュートリノのスペクトルを予測した（Horiuchi+ʼ18）.

ü しかしこの時に使⽤した超新星モデルは空間２次元、Newtonian等、改良の余地がある。

ü より現実的な超新星モデルの作成に向けて、⾃転と摂動の効果を検証した／する予定.

ü ⾃転を考慮した空間２次元計算の結果、ニュートリノの光度は10-20%、平均エネルギーは5-
10%、それぞれ無回転の場合に⽐べて減少した.

コアの⾃転が期待されるIb/c型超新星の割合（~30%）を考慮すると、~10%程度の影響.

ü 摂動を考慮しない空間３次元計算の結果、対応する２次元計算に⽐べて衝撃波の復活が~30ms遅
れた. 星の多次元進化に由来する摂動の効果を３次元計算で検証予定.


