超新星爆発におけるミューオン生成と ニュートリノシグナルへの影響

杉浦健一(早稲田大学)

第7回超新星ニュートリノ研究会

Collaborators: 山田 章一 (早稲田大学), 古澤 峻 (東京理科大学) 中里 健一郎 (九州大学), 鈴木 英之 (東京理科大学)

Table of contents

1.Introduction:

Standard evolution scenario of proto-neutron star (PNS) cooling and muon creation in supernova

2. Neutrino reactions relating with muon

3. Implication for neutrino signal

4.Summary

Standard Neutrino Signals from PNS

Standard Neutrino Signals from PNS

Standard Neutrino Signals from PNS

Cooling timescale of proto-neutron star

Evolution of interior of standard PNS

Evolution of interior of standard PNS

chemical equilibrium condition $\mu_{\mu} = \mu_{e} - \mu_{\nu_{e}} + \mu_{\nu_{\mu}}$

Muon can be appeared in PNS cooling phase

Importance of muon creation in SN explosion

 "Muon creation in SN matter facilitates neutrino-driven explosions" (Bollig et al. 2017)

Muonization process

Neutrino reactions related to muon

Muon scattering $\nu + \mu^{\pm} \leftrightarrows \nu' + \mu^{\pm'}$ Muon capture $\mu^- + p \leftrightarrows n + \nu_\mu$

$$\mu^+ + n \leftrightarrows p + \bar{\nu}_\mu$$

Flavor exchange reaction

$$\mu^{-} + \bar{\nu}_{\mu} \leftrightarrows e^{-} + \bar{\nu}_{e}$$
$$\mu^{+} + \nu_{\mu} \leftrightarrows e^{+} + \nu_{e}$$
$$\mu^{-} + \nu_{e} \leftrightarrows e^{-} + \nu_{\mu}$$
$$\mu^{+} + \bar{\nu}_{e} \leftrightarrows e^{+} + \bar{\nu}_{\mu}$$

Muon decay

$$\mu^{-} \leftrightarrows e^{-} + \bar{\nu}_{e} + \nu_{\mu}$$
$$\mu^{+} \leftrightarrows e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

Annihilation reaction $\mu^{-} + \mu^{+} \Leftrightarrow \nu + \bar{\nu}$ $\mu^{-} + e^{+} \Leftrightarrow \bar{\nu}_{e} + \nu_{\mu}$ $\mu^{+} + e^{-} \Leftrightarrow \nu_{e} + \bar{\nu}_{\mu}$

Neutrino reactions related to muon

Muon scattering $\nu + \mu^{\pm} \leftrightarrows \nu' + \mu^{\pm'}$ Muon capture

$$\mu^- + p \leftrightarrows n + \nu_\mu$$

$$\mu^+ + n \leftrightarrows p + \bar{\nu}_\mu$$

Flavor exchange reaction

$$\mu^{-} + \bar{\nu}_{\mu} \leftrightarrows e^{-} + \bar{\nu}_{e}$$
$$\mu^{+} + \nu_{\mu} \leftrightarrows e^{+} + \nu_{e}$$
$$\mu^{-} + \nu_{e} \leftrightarrows e^{-} + \nu_{\mu}$$
$$\mu^{+} + \bar{\nu}_{e} \leftrightarrows e^{+} + \bar{\nu}_{\mu}$$

Muon decay

$$\mu^{-} \leftrightarrows e^{-} + \bar{\nu}_{e} + \nu_{\mu}$$
$$\mu^{+} \leftrightarrows e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

Annihilation reaction $\mu^{-} + \mu^{+} \Leftrightarrow \nu + \bar{\nu}$ $\mu^{-} + e^{+} \Leftrightarrow \bar{\nu}_{e} + \nu_{\mu}$ $\mu^{+} + e^{-} \Leftrightarrow \nu_{e} + \bar{\nu}_{\mu}$

Reaction rate related with muon

 For simplicity, neutrino distributions are assumed to be Fermi-Dirac distributions with chemical equilibrium chemical potential.

Early phase (t ~ 0.4s)

Q [g/cc]	T [MeV]	Y_e	Y_{μ}	μ_n [MeV]	μ_p [MeV]	μ_e [MeV]	μ_{μ} [MeV]
1*10 ¹⁴	38.3	0.13	0.04	886	801	83.3	64.1

Deleptonization phase (t ~ 10s)

Implication for neutrino signal

Neutrino transport equation $\frac{1}{c}\frac{df_{\nu}}{d\tau} = \eta_{\nu}\left(1 - f_{\nu}\right) - \frac{1}{\lambda_{\nu}}f_{\nu}$

In diffusion limit

$$\begin{split} F_{\nu}^{E} &= -\frac{\Gamma T^{3}}{\alpha 6\pi^{2}} \left[D_{4} \frac{\partial (\alpha T)}{\partial r} + D_{3,e} \alpha T \frac{\partial (\mu_{\nu_{e}}/T)}{\partial r} + D_{3,\mu} \alpha T \frac{\partial (\mu_{\nu_{\mu}}/T)}{\partial r} \right] \\ D_{4} &= \sum_{i} D_{4}^{i} = \sum_{i} \int_{0}^{\infty} d\epsilon \frac{\epsilon^{4} f_{i,\text{FD}} \left(1 - f_{i,\text{FD}}\right)}{T^{5}} \lambda_{\nu_{i}} \end{split}$$

• Cooling timescale in deleptonization phase \rightarrow Kelvin-Helmholtz timescale $\tau_{\rm KH} \sim \frac{E^{\rm th}}{F_{\nu}^E} \propto \frac{1}{D_4}$

• D₄ ratio with/without muon:
$$D_4^{\rm muon}/D_4^{\rm w/o\ muon} \sim 1.1$$

Implication for neutrino signal

Neutrino transport equation

$$\frac{1}{c}\frac{df_{\nu}}{d\tau} = \eta_{\nu}\left(1 - f_{\nu}\right) - \frac{1}{\lambda_{\nu}}f_{\nu}$$

In diffusion limit

- Cooling timescale in deleptonization phase
 - → Kelvin-Helmholtz timescale $\tau_{\rm KH} \sim \frac{E^{\rm th}}{F_{\mu}^E} \propto \frac{1}{D_4}$

• D₄ ratio with/without muon: $D_4^{\rm w/o\ muon}/D_4^{\rm muon} \sim 1.06$

Summary and Future work

Summary

- ミューオンの関係するニュートリノ反応の計算
 - ✓ 電子型反ニュートリノとミューオンニュートリノの平均自由行程は (特に高エネルギー側で)影響を受ける.
 - ✓ 冷却タイムスケールはミューオンの存在によって長くなることが予想される (数%程度になるか?)
 - ✓ ニュートリノスペクトルの形が変わることが予想される.

Future work

- npeµ-物質を仮定した PNS 冷却計算を用いた定量的な評価
- 核子の多体相互作用をきちんと組み込んだニュートリノ反応
- ミューオン型(反)ニュートリノの非対称な反応に起因するニュートリノ振動?